
User Manual of FitSuite 2.0.0

SAJTI Szilárd

October 26, 2021

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Contents
1 Introduction, antecedents 1

2 Basic concepts of FitSuite 2
2.1 Experimental scheme and its structure 2
2.2 Transformation matrix technique 3
2.3 Parameter distribution . 6
2.4 Statistics . 7
2.5 Uncertainty estimation, bootstrap method 11
2.6 Fitting . 14

2.6.1 Constraints (Simple bounds) 15
2.6.2 Distributed parameters (using maximum entropy principle) 18
2.6.3 Rescaling parameters . 19
2.6.4 Parameter resolution, minimum step width 19
2.6.5 Numerical derivatives 20

2.7 Subspectrum . 21

3 Working with FitSuite 22
3.1 Starting a new project . 22
3.2 Building up the model structure 23

3.2.1 Adding objects, models using xml like files 24
3.2.2 Copying and inserting objects 31

3.3 Adding data . 31
3.4 Changing parameters, matrices 36
3.5 Parameter filtering . 38

3.5.1 Single word arguments, wildcards 39
3.5.2 Complex arguments, logical operators 40
3.5.3 Combination of commands using logical operators 40
3.5.4 List of filter commands 41
3.5.5 List of filter commands with optional arguments 43
3.5.6 Complex examples . 45

3.6 Command-line interface . 45
3.7 The ‘math’ command . 55

3.7.1 Mathematical functions in math command 58
3.8 Report generator . 62
3.9 Cloning . 63
3.10 Merging projects . 65
3.11 Model groups . 65
3.12 Simulation, Fit . 65

3.12.1 Powell‘s method . 66

II

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

3.12.2 Nelder – Mead method 67
3.12.3 Polak – Ribiere and Fletcher – Reeves 68
3.12.4 Broyden – Fletcher – Goldfarb – Shanno 69
3.12.5 Levenberg – Marquardt 70
3.12.6 Levenberg – Marquardt method (LMDER) from the MIN-

PACK . 70
3.12.7 Genetic algorithms . 71
3.12.8 After fit . 78

3.13 Uncertainty calculation . 78
3.14 Calculating statistics . 79
3.15 Plotting . 79
3.16 Sounds . 80
3.17 Examples . 80

4 Sources, documentation 81

5 ‘Installation’ 82
5.1 Linux . 82
5.2 Windows . 83

6 License 83

References 85

Glossary 87

Index 91

III

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

1 Introduction, antecedents
FitSuite is an environment for simultaneous fitting and/or simulation of experi-
mental data of vector-scalar type, such as parametric curves and surfaces typically
collected in a physics experiment. Simultaneous here means that several sets of the
same type of experiment and even of different types of experiments can be simu-
lated/fitted in a self-consistent, statistically correct framework with provisions for
cross-correlation of the theoretical and specimen parameters.

Experiments often provide raw data of measurements performed on the same
sample by different methods, and/or using different experimental conditions, like
temperature, pressure, magnetic field, and the like. Data often partly depend on
the same set of experimental and sample parameters, therefore a simultaneous
evaluation of all experimental data is a prerequisite. However, data evaluation
programs are dominantly organized around a single method, therefore a simulta-
neous access to the data for a common fitting algorithm is not typical. Lacking
suitable programs, some parameters are determined from one measurement, as-
sumed uncertainty-free and kept constant when evaluating other experiments, an
obviously incorrect approach. Besides, for different methods different programs
are used, which makes it very difficult to tune parameters of such theories and their
uncertainties and correlations to each other and to extend or modify the theories
to describe different experimental data.

Therefore, starting in 2004 (as part of the Dynasync FP6 project sponsored by
the European Commission, and since 2006, within the NAP_VENEUS project,
sponsored by the Hungarian National Office for Research and Technology) we
developed FitSuite for Windows (tested under XP and 7) and Linux, a code that
consistently handles by now data of over ten spectroscopic methods with over
twenty theories together with a large number of sample structures in a common
inter-related framework.

FitSuite is an environment, in which, besides the possibility of adding brand
new (user written) ‘theories’, the user can ‘build’ new theories based on the com-
bination of existing ones, subroutines, which call each other. To our opinion,
this feature of FitSuite is really essential since a complex physical system can in
general be divided into subsystems and even this subsystem can be divided into
further subsystems, groups of which can be described with the same parameters
and physical equations. To provide an example, assume we have a thin film built
up from layers and the layers may be built up from further objects (depending
on to what physical characteristics the method in question is sensitive to) such as
domains, atomic groups, lattice sites, molecules, etc. (E.g. in Mössbauer-related
problems each layer may contain several sites, with their own hyperfine ‘theories’
to calculate the corresponding subspectra).

The original idea of cross-correlation and of a hierarchy of theories as well

1

http://www.fs.kfki.hu
http://www.dynasync.kfki.hu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

as a number of subroutines of FitSuite were inherited from EFFI (Environment
For FItting) [1], an originally Mössbauer spectroscopy-related Fortran program
developed over the years by Prof. Hartmut Spiering from University of Mainz. In
view of the friendly and fruitful collaboration between the Budapest and Mainz
groups over the last decades, Prof. Spiering kindly agreed to build in the theo-
ries written by him and tested within EFFI into FitSuite in order to promote both
projects. Enlightening discussions with him greatly promoted the FitSuite project.
Although in the last three years the two projects developed in different directions,
we are very grateful for Prof. Spiering’s essential contribution to FitSuite.

In the following, we go through the basic concepts used by FitSuite first.
Thereafter, we give a short description of the GUI (Graphical User Interface),
how FitSuite should be used from start to fit and present shortly some examples
which can be found in the directory examples.

2 Basic concepts of FitSuite
In this section, we try to make the reader acquainted with the basic concepts used
in the program, which are necessary to know, in order to be able to use it. Here,
we summarize the principles. The description of the user interface is given in the
next section, there we will see, how these concepts, principles are used in practice.

To be able to simulate (fit), we need to give the program our knowledge of the
problems. In FitSuite we should create simultaneous fit projects first, (which have
file extension *.sfp), which contain the fitting problems consisted of experimen-
tal data and of experimental scheme.

2.1 Experimental scheme and its structure
The experimental scheme contains the information necessary for the description
of the system consisted of the experimental apparatus(es), about the experimen-
tal method itself and of the system under study (e.g: a measured sample). We
know that the meaning of the word experimental scheme is a bit different from the
present usage, as it usually contains only the apparatuses, but we did not find a
better one. In our thoughts, we usually separate the apparatus used for observation
and the subject of observation. Here we do not want to do this, as it would lead
a more complex structure, and the experimental scheme selects the characteristic
properties, features of the studied system (and of the apparatus), which are essen-
tial to be able to calculate the theoretical pair of the experimental data set, which
is prerequisite for fitting, for checking theory or measurement, etc.

In FitSuite the experimental scheme is built up of objects, which correspond
to physical objects (or concepts) e.g.: source, sample, detector, layer, site, etc. The

2

http://nucssp.rmki.kfki.hu/~spiering/

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

experimental scheme is also an object. It has a simple tree structure with one root
object, the experimental scheme. To these objects belong properties which repre-
sent the physical quantities (thickness, roughness, hyperfine field, susceptibility,
electric field gradient, effective thickness, ...) and some numbers characterizing
the experimental scheme e.g. number of channels, symmetries of the sites, etc.

Besides objects and properties, to each object may belong algorithms for cal-
culation of the characteristic spectra. (In the current built-in problems only the
experimental schemes and the sites have algorithms.) These type of objects are
called model on the program interface, as it is an almost perfect name for them.

This type of structure is needed, because simulating our problem, writing the
simulation algorithms, this structure mirrors the real physical system and therefore
it is a practical, logical choice.

2.2 Transformation matrix technique
In contrast to the last remark of the previous section, the ‘optimization’ meth-
ods used for fitting require a parameter vector and not an object tree structure
with properties. Furthermore, in case of simultaneous fitting we usually have the
results of experiments performed in a bit different environment (external field,
temperature, etc.) and/or different type of experiments using the same ‘sample’.
Therefore, there are a lot of common parameters. To eliminate this type of redun-
dancy and as it is also convenient for the user to use as few parameters as possible
(as it is more transparent for human and easier to fit in a parameter space with
lower dimension at least if we want to get correct results) transformation matrix
technique is used [2]. For this, we need also parameter vector (array). Because
of these considerations we have to generate the parameter vector and the initial
transformation matrix from the object tree structure mirroring the real physical
system. The model parameters which still contain all the redundancy can be col-
lected in a vector p = (p1,p2, . . . ,pn) , where pi is the vector containing all the
parameters belonging to the i-th model in the current simultaneous fit project. Let
denote the vector of the fitting (or if you like simulation) parameters with P and
the transformation matrix with T. The transformation matrix technique uses the
expression p = TP, where dimP ≤ dimp. Above, it was mentioned that this
technique is used in order to eliminate the redundancy arising because of the com-
mon parameters, but this is not the unique reason. We can take into account some
possible linear relations between the parameters also, which is a redundancy too.

It is advisable to take into account that there are parameters which according
to expectations will not have interdependencies and therefore the T matrix can
be ‘block diagonalized’. It is more transparent to handle submatrices with lower
dimensions, than one extended sparse matrix. Therefore we have to categorize the
parameters according to our expectation whether the subspace stretched by a sub-

3

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

set of them may have interdependencies or this is very unlikely. (If the user finds a
case, where our expectations are not met, (s)he is able to unite or split the subma-
trices, thus our choice here is not a constraint.) The initial submatrices generally
are identity matrices, but there are exceptions. E.g. the thickness of a multilayer
sample will be the sum of the layer thicknesses; in Mössbauer spectroscopy in a
doublet site, the line positions and the measure of the splitting and the isomer shift
will not be independent, etc.

Before going further, we have to mention a few concepts related to this trans-
formation matrix technique used for simultaneous fitting (and simulation). In or-
der to eliminate redundancy arising because common parameters, we often use
the operation

Corr
u∈{j1,j2,...,js}

: Mn×m −→ Mn×(m−s+1) (1 ⩽ ji ⩽ m)

(where Mn×m denotes n by m matrices) defined by

Corr
u∈{j1,j2,...,js}

T =

T11 . . . T1,jk−1 T1,jk+1 . . . T1,u−1

s∑
r=1

T1jr T1,u+1 . . .

...
...

...
... . . .

Ti1 . . . Ti,jk−1 Ti,jk+1 . . . Ti,u−1

s∑
r=1

Tijr Ti,u+1 . . .

...
...

...
... . . .

Tn1 . . . Tn,jk−1 Tn,jk+1 . . . Tn,u−1

s∑
r=1

Tnjr Tn,u+1 . . .

(1)

which correlates the parameters belonging to columns j1, . . . js except of the u-
th column, which becomes the sum of the s correlated columns. The inverse
of this operation is the decorrelation of parameters. The latter generally is not
unequivocal, of course, therefore user interaction may be needed thereafter, in
order to set the proper fit/simulation parameter values and transformation matrix
elements. We may also split a matrix

Split
{i1,i2,...,ik}
{j1,j2,...,js}

: Mn×m −→
{
M(n−k)×(m−s),Mk×s

} (
1 ⩽ iu ⩽ n

1 ⩽ jv ⩽ m

)

4

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

E.g. in case of:

Split
{1,4}
{2,3,6}

t11 T12 T13 t14 t15 T16 t17
T21 t22 t23 T24 T25 t26 T27

T31 t32 t33 T34 T35 t36 T37

t41 T42 T43 t44 t45 T46 t47
T51 t52 t53 T54 T55 t56 T57

 =

 T21 T24 T25 T27

T31 T34 T35 T37

T51 T54 T55 T57

 ,

(
T12 T13 T16

T42 T43 T46

) ,

(2)

where the elements denoted by T will correspond to the matrix Mk×s and the el-
ements denoted by T to the matrix M(n−k)×(m−s). The elements denoted by t will
be eliminated, therefore information will be lost, if they were not 0. Unification
of two matrices can be conceived as the reverse of splitting, but there we set the
cross-elements denoted by t to 0.

Sometimes it is useful to insert a new simulation/fit parameter, this corre-
sponds to insertion of a new column in the transformation matrix. E.g. we know
the value of the sum of some parameters, but we do not know their value. In such
a case we may insert a new parameter, which we keep constant, set it to the value
of the known sum, and set the corresponding matrix elements properly, like here:

1 −1 −1 · · · −1
1

1
. . .

1

Psum

P2

P3
...
Pn

 =

p1
p2
p3
...
pn

 . (3)

Thus we add a constraint for the corresponding parameters and we can eliminate
a redundant fitting parameter and we do not increase the number of fitting param-
eters, as we would using Lagrange multipliers.

Some parameters are integer numbers (e.g. channel numbers, switches). These
are never fitted, but the transformation matrix technique is useful for them, espe-
cially if some of them have the same value. The integer and real number based
parameters are separated in the program and on the user interface too, to avoid
the possibility of rounding errors, because of the finite precision of the computer
representation of the numbers. This does not mean, that in some cases it would
not be reasonable to mix the number types, but it is safer, than what we could gain
allowing mixing. Everything we said about the transformation matrix for real
parameters is valid for integer parameters, except of the fact, that in this case we
have integer matrix elements, just because of the above mentioned considerations.

5

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

2.3 Parameter distribution
In physics, we often have not a single well defined physical object, but rather an
ensemble of them. Even in this case, it may be useful to represent them with a
single object in our (computer) model, but we have to know that which parame-
ters are the same for the members of the ensemble and which are different. We
can group the objects according to these parameters. The parameter distribution
fd(p

d) will give the probability that the ensemble has objects, which can be differ-
entiated from other members according to the parameter set

{
pdk
}

(which is part
of the set of all the parameters {pi}). As usually this distribution is unknown, we
have to determine it by fitting too. There is no sense in defining the distributions
on the level of model parameters, as it would be to complex and would require an
enormous administration, therefore we will have Pd, from which pd can be calcu-
lated using the transformation matrix and fd(p

d = T(P,Pd)) = Fd(P,Pd). We
usually do not know the analytical shape (e.g. Lorentzian, Gaussian) of the distri-
bution either, and even if we know it, in general case, it may not be easy to use it
for our calculations. Practically, therefore, we fit histograms with finite resolution
and finite range, which is divided up equidistantly around the midrange. E.g. for
a single distributed parameter P with resolution N , range R and midrange P0 we
will have histogram values hj for the parameter values:

Pj = P0 +R
(

j

N
− 1

2

)
, (j = 0, . . . ,N − 1). (4)

If we have n distributed parameters and they are not independent, we will have a
common distribution, which may be handled similarly, but we will have hj1,...,jn

histogram elements for the parameters Pd
j1,...,jn

= (P1,j1 , . . . ,Pn,jn), where the
components are given as:

Pi,ji = P0
i +Ri

(
ji
Ni

− 1

2

)
, (ji = 0, . . . ,Ni − 1), (i = 1, . . . , n). (5)

In general case having distributed parameters we may fit {Ri}, {P0
i } and the his-

togram, i.e. the set {hj1,...,jn}. These can be handled as additional fitting parame-
ters. In order to have an appropriate result we have to take into account additional
constraints for the histogram. It is obvious, that we may assume that Ri ⩾ 0,
hj1,...,jn ⩾ 0 and

∑
hj1,...,jn = 1. There are several approaches applying further

constraints in order to get appropriate results for the parameter distributions [3–
7]. One of them, which is also used in FitSuite currently, is the maximum entropy
principle [7]. The entropy from information theory is defined as

S =
∑
hi>0

−hi lnhi. (6)

6

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

We try to fit our parameters with the constraint, that S should assume its maxi-
mum. For further details we will return to this topic in subsection 2.6.2.

Another nontrivial question is how the objects corresponding to histogram ele-
ments contribute to the resulting spectrum, how they should be taken into account.
The most simple approach (which currently is also used by FitSuite) is based on
the assumption, that the resulting (sub)spectrum yres belonging to the lowest rank
submodel which still contains the physical object (objects if the distributed pa-
rameter is a correlated one) can be obtained as:

yres =
∑

j1,...,jn

hj1,...,jny
(
pd
j1,...,jn

,p,x
)
. (7)

Of course, other expression can be conceived and put into the program if some
physical reason can be attributed to it. yres may be and is used as an intermediate
result if it belongs to a submodel (a part of a model, which itself is a model too).

The number of histogram elements will be
∏
i

Ni, therefore it is not too ad-

visable to increase the number of distributed parameters too much. As fitting too
much parameter is always a danger, but fitting too less may also be dangerous
in case of a complex distribution, where the spectrum depends on the distributed
parameter strongly. If some of them are independent we may gain a lot as e.g. for
independently distributed parameters we will have only

∑
i

Ni additional parame-

ters to fit, because of the histogram elements. Before showing, how the maximum
entropy principle is used, we will see the minimized functions during fitting in
absence of distributed parameters.

2.4 Statistics
We usually mean by fitting parameters finding the parameters, for which the clas-
sical χ2 statistic is minimal. This function is given as

χ2(p) =
∑
i

(yexp
i − ytheo(xi,p))

2

σ2
i

, (8)

where yexp
i and ytheo

i are the experimental and theoretical values for the i-th data
point, and σ2

i is the standard deviation (uncertainty) of measurement of i-th data
point, xi is the independent variable (it may be a vector). Fitting simultaneously
we minimize the (weighted) sum of the χ2-s of the different fitting problems. The
χ2 is not the single statistic, which may be used for this purpose (e.g. see abso-
lute deviation on wikipedia1). Furthermore its use is justified only for normally

1http://en.wikipedia.org/wiki/Least absolute deviation

7

http://en.wikipedia.org/wiki/Least absolute deviation

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

(Gauss) distributed experimental data. In the problems handled by FitSuite cur-
rently, we have data obtained by particle counters, which have usually Poisson
distribution. In case of large count rates, there is no problem, the Poisson distri-
bution can be approximated well with Gaussian distributions, but in other cases
we have to use other statistics in order to fit parameters. Several approaches exist
to tackle this problem [8]. There are approximations based on (8) and on the fact,
that the variance and the expectation value of the Poisson distribution is the same.
These are of the form of classical χ2, namely Pearson’s χ2

χ2
Pearson’s(p) =

∑
i

(yexp
i − ytheo

i (xi,p))
2

ytheo
i (xi,p)

, (9)

modified Neyman’s χ2

χ2
Neyman’s(p) =

∑
i

(yexp
i − ytheo

i (xi,p))
2

max(yexp
i , 1)

. (10)

(In ‘unmodified’ Neymann‘s χ2 statistic, yexp
i appears instead of max(yexp

i , 1).)
Furthermore there are other statistics based on Maximum Likelihood Estimation,
namely Poisson MLE

χ2
PMLE = 2

∑
i

(
ytheo (xi,p)− yexp

i

)
−

∑
y

exp
i ̸=0

yexp
i ln

ytheo (xi,p)

yexp
i

 , (11)

obtained by using MLE for Poisson distributed data. And Gaussian MLE

χ2
GMLE =

∑
i

[(
yexp
i − ytheo (xi,p)

)2
ytheo (xi,p)

+ ln
ytheo (xi,p)

ci −
(
yexp
i − ci

)2

ci

]
, (12)

where ci =
√
(yexp

i)
2
+ 1

4
− 1

2
,

obtained by using MLE for normally (Gauss) distributed data and used for Poisson
distributed data applying the substitution σ2

i = ytheo (xi,p) also used for (9).
The detailed considerations leading to these statistics and their usage can be

found in [8]. Here we restrict ourselves to mention a few additional facts about
them. These statistics all follow asymptotically (as the number of data points,
more accurately the degree of freedom (DOF) goes to ∞) a χ2 distribution. For
Poisson data χ2

PMLE should be used during fitting. But according to the tests avail-
able in [8] this is not the appropriate Goodness Of Fit statistic (hypothesis test),
for that χ2

Pearson’s should be used.
In case of simultaneous fitting, we can have experimental data with different

distributions, therefore the statistics used to fit for each fitting problem may be

8

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

different. We fit a resulting statistic, their (weighted) sum. This is not a problem,
as if we start from the MLE, from which all of them are derived, we would obtain
also such a resulting statistic. In the case of the resulting statistic, the above
mentioned names generally will not have any meaning, therefore in the program
it is referred to just as the ‘Fitted Statistic’.

There are experiments, where the data usually are preprocessed. E.g. in case
of neutron reflectometry, the experimentalists normalize the results, as they pre-
fer to plot reflection and not count rate. The problem with this approach is that
calculating the (9-12) statistics, their value will not be the correct one. In case of
the classical χ2 statistic, defined by (8), this is not a problem, as it is enough just
to normalize σi as well. We are able even to fit, as for that it is enough to know
the location of the minimum. The value of the statistic gives some information
about the quality of the fit. If we just fit the value of the statistic, this question
is not as interesting, as in case of parameter uncertainty estimation, or hypothesis
test. Without knowing the correct value the uncertainty estimations, hypothesis
test will be incorrect. Therefore we need the raw, unpreprocessed data set, or at
least the parameters used during preprocessing in order to be able to calculate the
correct statistic, e.g. in the above mentioned example we need the normalization
factor.

With the above mentioned Goodness Of Fit statistic SGOF it may be checked
whether the used model is correct or not. For χ2 statistic this can be done by
calculating the probability Q(χ2

min, ν) that the observed χ2 exceeds the fitted value
χ2

min even for a correct model. Q is the incomplete gamma function:

Q(χ2
min, ν) =

1

Γ(ν
2
)

∞∫
1
2
χ2

min

e−tt
ν
2
−1dt, (13)

where Γ is the gamma function. The number ν is the degrees of freedom, which
is the number of data points minus the number of fitted parameters. Q is usually
called the ‘goodness-of-fit.’ As a rule of thumb in textbooks is stated, that models
with Q < 0.001 are likely wrong. (To be honest, we never saw such a good fit
for spectra fitted by the program. X-ray reflectometry is very far from that. The
Mössbauer spectra are nearer but still far below this value, so for them it should
be taken more seriously. The probable problem with X-ray reflectometry is that
our theoretical models still neglect some properties of the physical system, e.g.
the material inhomogeneities.) For data with Poisson distributions this value can
be much lower. Models with small Q values may be accepted only if we know
the reason. (The X-ray reflectometry is a good example for this.) Very good fits
Q ≈ 1 are also suspicious, as they usually arise if the experimenter overestimated
her(is) uncertainty, or made something we would never assume of anyone. As

9

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

another measure of ‘goodness-of-fit’, often the ‘reduced’ (or relative) χ2 statistic
is used

χ2
reduced =

χ2

⟨χ2⟩
=

χ2

ν
. (14)

As a rule of thumb χ2
reduced should be close to 1 for good models (for Mössbauer

spectra this is usually true, for X-ray reflectograms not). This depends strongly
on the degrees of freedom. This rule is based on the fact that the χ2 statistic has a
mean ν and standard deviation

√
2ν and for large ν becomes normally distributed.

As the above mentioned statistics also have asymptotically χ2 distribution, these
rules of thumb may be useful for them and their weighted sum, but we should be
cautious.

If we start from the maximum likelihood estimation in case of a simultaneous
fitting problem, we will get that the weights of the statistics with which they are
summed up in order to get the common resulting statistic(s) should be 1. But
sometimes it may be useful to have the possibility to change these weights. This
may be useful especially when we are still far from the minimum. Usually, it is
not a good idea to start fitting all the problems at once, if we are far from the true
minimum. Initially, it is worth to fit the most simple (and most error free) problem
which can be simulated fast and ‘promises’ to get good preliminary results for the
common parameters easier. And only if we reached an acceptable result, using
this simpler fitting problem, should we continue the fitting, adding the other fitting
problems. This way we can progress faster still having the simultaneous fitting,
which is the single correct way for evaluation of spectra, where we have measured
the same sample with different methods and/or under different conditions and so
forth.

Some fitting methods do not require these statistics or their sums directly. In-
stead they require a vector κ(p) and maybe its derivatives according to the param-
eters. The square of i-th component of this vector should give the contribution of
the i-th data point to the corresponding statistic, i.e.

χ2
... =

∑
i

κ...
i (xi,p)κ

...
i (xi,p) = κ...(x,p)Tκ...(x,p) (15)

E.g.: in case of classical χ2 statistic defined by (8) we will have

κi(xi,p) =
yexp
i − ytheo(xi,p)

σi

, (16)

in case of Pearson’s χ2 statistic defined by (9)

κPearson’s
i (xi,p) =

yexp
i − ytheo

i (xi,p))√
ytheo
i (xi,p)

, (17)

10

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

in case of modified Neyman’s χ2 statistic defined by (10)

κNeyman’s
i (xi,p) =

yexp
i − ytheo

i (xi,p)√
max(yexp

i , 1)
, (18)

in case of Poisson MLE statistic defined by (11)

κPMLE
i (xi,p) =

√
2

√

ytheo (xi,p)− yexp
i if yexp

i = 0√
ytheo (xi,p)− yexp

i − yexp
i ln

ytheo (xi,p)
yexp
i

if yexp
i ̸= 0

(19)

and in case of Gaussian MLE statistic defined by (12)

κGMLE
i (xi,p) =

√(
yexp
i − ytheo (xi,p)

)2
ytheo (xi,p)

+ ln
ytheo (xi,p)

ci
− (yexp

i − ci)
2

ci
, (20)

where ci =

√
(yexp

i)
2
+

1

4
− 1

2
.

2.5 Uncertainty estimation, bootstrap method
Uncertainty (error) estimation of the fitted parameters pfit is also a complex is-
sue. The usual procedure to obtain the uncertainties is based on the fact, that for
χ2 statistics the uncertainty of parameters with confidence level c and degree of
freedom M can be obtained looking for the minimal hyperrectangle (with edges
parallel to the unit vectors belonging to parameter components) containing the
hypervolume V = {p|χ2(p) ⩽ χ2(pfit) + γ}, where γ is the c quantile belonging
to chi-square distribution with degree of freedom M . (A c quantile2 (0 < c < 1)
of a (cumulative) distribution (function) F (x) is γ if F (γ) = c.) As the fitted
parameters pfit are obtained with minimization of χ2, therefore their vector will
be part of V . For further details see chapter 15 in [9]. This approach is also valid
for statistics (9-12), for reasons see section 2.4 in [8].

To simplify the procedure further, it is often assumed that the fitted statistic as
a function of fitted parameters has a parabolic profile in V and therefore knowing
the second derivatives of the fitted statistic, the parameter uncertainties δpi can be
obtained by solving a second order equation

∑
i,j Aijδpiδpj = γ. Sorrily in case

of nonlinear problems, the assumption about parabolic profile is usually correct
only in a small part of V (in neighborhood of pfit) and not in the whole V (see
Fig. 1). Therefore, we may estimate the uncertainties quite inaccurately using

2http://en.wikipedia.org/wiki/Quantile function

11

http://en.wikipedia.org/wiki/Quantile function

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 1: Uncertainty estimation for two free parameters. As it can be seen, the
parabolic approximation is valid only in domain U, where the parabolas Γ1,Γ2 are
good approximations of the sections of the χ2(P1, P2) with planes parallel to P1

and P2 respectively. The true uncertainty for the given confidence level is given
by the bounding rectangle ABCD of V which is the corresponding ‘elevation’
line. And [PA

1 , P
B
1] and [PD

2 , PA
2] are the confidence intervals.

this method. If it is applicable, we may also use the fact, that Aij is with good
approximation the inverse of the covariance matrix [see page 683 in chapter 15 of
ref. 9]. This may have advantages in case of some methods, where this matrix is
calculated in each iteration step.

There is another possible source of error using this approach, if we do not have
(as is the case mostly) the analytical derivatives according to the fitted parameters
of the ‘theoretical function’ used to model the problem, which is needed to calcu-
late the second order derivatives of the fitted statistic. In this case the derivatives
should be calculated numerically, which may have quite unacceptable errors in
some regions of the parameter space (see subsection 2.6.5).

Another approach is the bootstrap method [10–14] using synthetic data sets
[see pages 689-699 in section 15.6 of ref. 9] generated by Monte Carlo methods.
We may generate synthetic data sets from the measured data sets:

12

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• randomly erasing some data points, or

• randomly replacing some data points (this can be used only, if we have sev-
eral measurements for the same independent variable) with another mea-
surement value, or

• replacing the measured values yexp
i with y∗exp

i generated as it would have
been drawn randomly from a ‘bootstrap sample’ whose mean is yexp

i and
its elements are distributed according to the distribution assumed for the
experimental data. Therefore, we may have to know besides yexp

i all the
other parameters on which the distribution depends. E.g. in case of normally
distributed data we have to now the deviation (i.e. the uncertainties of the
data), but yexp

i is enough in case of Poisson distributed data, as that already
determines unequivocally the distribution.

The synthetic data sets, which in principle could also be the results of the exper-
iments performed (with the known uncertainties), are fitted. The results of the fit
of a synthetic data set is stored only if it was convergent and the corresponding
fitted statistic differs from the fitted statistic of the experimental data set less than
a user defined small positive number. We filter out this way the synthetic data sets
which give a very different fitted statistic, because they miss already too much
information compared to the real experimental data, or because the data points
were not changed really randomly, e.g.

∣∣∣∑(
yexp
i − ysynth

i

)∣∣∣ becomes unaccept-
ably large because of a ‘synthetic systematic error.’ It may also happen, that the
fit has gone wrong unexpectedly, and we do not want to throw out everything just
because a few such bad fits. (If the fitted statistic of a synthetic data is less, than
the value used in the ‘filtering criterion’, that value is updated with it. Therefore,
the bootstrap method may also be used as some sort of fitting method.)

Applying this algorithm, we survey the ‘basin’ in the parameter space which
contains the parameter vectors providing fits with the same quality for some pos-
sible outputs of our experiment(s) according to the experimental results and our
knowledge about the precision of the measurement. Therefore, using the set of
fitted parameter vectors of synthetic data sets, we may get a probability density
(histogram) f(p) corresponding to possible experimental uncertainties. Knowing
f(p) we can calculate the expectation value and the standard deviation of fitted
parameters. This standard deviation can be used as an uncertainty estimate. The
bootstrap method needs a lot of (⪆ 2000) synthetic data sets,3 therefore it may be
very expensive in computation time. It is advisable to calculate uncertainties only

3The number 2000 is not graved in stone, in literature we may find lower values. This depends
on the problem, on the paper.

13

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

when we have a quite good fit. For usability conditions and further details of the
bootstrap method see the cited works.

It is inappropriate to give just the uncertainties for a given confidence level, as
we may never know, when somebody will need our data with higher our lower
confidence levels. In that case it is very useful to have the uncertainties for
quantile=1, which is the sample standard deviation, as thereafter the uncertainties
knowing the degree of freedom can be calculated for arbitrary confidence level
easily.

The covariance matrix has other uses than the uncertainty estimation. We
can ‘discover’ interdependencies between the parameters looking for off-diagonal
elements with large (>0) absolute values compared to the corresponding diagonal
elements. In case of such interdependency the transformation matrix technique
may be useful.

2.6 Fitting
Without going into the details here, we try to summarize the approaches used to
fit experimental data sets using optimization methods, enhancing the facts, which
may be important even for the users, who sorrily do not know (and maybe would
not like to know) the mathematical background scrupulously. For further details
we refer to the rich literature about this topic. E.g.: chapter 10 of Numerical
Recipes in C [9] available at http://www.nrbook.com, or as a good starting point see
the optimization page on Wikipedia4 and the references available there.

We use optimization methods, as fitting parameters we want to find the pa-
rameters for which the fitted statistic assumes its minimum. As the fitted statistics
are positive definite such minimum should exist, but there maybe several one, and
a lot of local minima. Therefore, finding the global minimum(ma) of a general
function depending on a lot of parameters (variables) is not easy. There is no per-
fect solution, user interaction, intuition is needed. In case of fitting, we usually
have some preliminary knowledge about most of the fitted parameter values, and
we want just to have more accurate values, and to determine only a few totally
unknown parameters, and even in that case we may have some conjecture about
the range in which we should look after them. (Preliminary simulations may be
very helpful at this stage.) We start the fitting from a point of the parameter space,
which according to expectation is not too far from the solution we are looking for.
If we have luck the method will find it, or will get nearer to the solution. The
method may stuck in a local minimum, or in more unlucky cases the method may
become divergent, or it may need further iteration, to get closer to the minimum.

To understand these features, we have to tell more about these methods. It is
4http://en.wikipedia.org/wiki/Mathematical optimization

14

http://www.nrbook.com
http://en.wikipedia.org/wiki/Mathematical optimization

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

common in all of them, that they are some sort of iteration algorithms. And that in
each iteration step, the value (and/or derivatives) of the objective function, whose
minimum is to be found, are calculated in discrete points of the parameter space
determined by the method and it is tried to determine, whether is there a minimum,
or where we have to take up the new points, in which the objective function should
be examined next. If we look at the path of the iteration steps getting nearer and
nearer to the current minimum, we will get a curve similar (except of some jitter)
to a meandering river flowing always to lower levels. It may be imagined, that
this path may be quite complex in higher dimensions. Reaching the minimum
can take a lot of time and we may stuck into local minima much easier. As we
can examine the function only at finite number of points, if the resolution of the
method (specified by proper options) is not high enough we may even step over
some minima, if it is too high it may take much longer time to get there. The
methods were devised to make the best possible compromise, but they are not
perfect. It is the task of the user to influence the fitting by setting the proper
options of the method appropriately.

2.6.1 Constraints (Simple bounds)

As we mentioned in the beginning knowing approximately the domain in which
the parameters may be found, can be very helpful. We can add to our optimization
problem constraints of the form gj(P) ⩽ 0. To solve such optimization problems
with constraints, several methods were devised. Here we do not dive into the
nonlinear programming, which tackles the most general problems. We will show
only three simple methods, two of which are used currently in our program. We
have currently only simple bounds, in which case gj(P) = Pij − cj ⩽ 0, or
gj(P) = −Pij −cj ⩽ 0, where cj-s are constants, simplifying the problem further.

The first two methods, the penalty and barrier methods have common fea-
tures, as in both cases the objective function is modified. In both cases we replace
the problem with a series of unconstrained optimization problems which should
converge to the original problem. We will have a sequence of objective functions
of form

Hk(P) = f(P) + qkZ(P), qk > qk−1 > 0, qk → ∞ (21)

where f(P) is the original objective function, Z(P) is the penalty function and qk
is the monotonically increasing divergent sequence of penalty coefficients. If M
is the feasible region in the parameter space given by the constraints the penalty
function should be of the form

Z(P) =

{
0 P ∈ M

> 0 P /∈ M
(22)

15

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Two often used examples for such penalty functions with m constraints:

Z(P) = (max{0, g1(P), . . . , gm(P)}+ 1)r − 1 (r = 1, 2, 3, . . .) (23)

and

Z(P) =
m∑
i=1

(max{0, gi(P)}+ 1)r −m (r = 1, 2, 3, . . .). (24)

Solving the modified optimization problems consecutively, starting from the so-
lution of the previous modified problem each time, we may get close to the real
solution of the original constrained problem.

In the program FitSuite we refer: to the function (23) and (24) as 1. and
2. Penalty function, respectively; to r as Penalty exponent. The penalty coeffi-
cients are of the form qk = qk of a power sequence and q is referred to as the
Penalty multiplicator. Convergence is reached if for all the fitted free parameters∣∣∣pi − pprevious

i

∣∣∣ ⩽ τtolerance · 1
2

(
|pi|+

∣∣∣pprevious
i

∣∣∣) , i.e. the relative change in all the
parameter values is less, than the tolerance factor τtolerance which in the program is
referred to as Penalty tolerance.

With barrier method we have a sequence of objective functions of form

Hk(P) = f(P) + wkB(P), 0 < wk < wk−1, wk → 0 (25)

where f(P) is the original objective function, wk is the sequence of monotonically
decreasing barrier coefficients converging to 0 and B(P) is the barrier function
growing to ∞ on the boundary of M . Because of this property of the barrier
function it is useful in case of gj(P) < 0 constraints, but numerically (as we have
always a finite precision using computers) there is not much difference between
gj(P) < 0 and gj(P) ⩽ 0. Two often used examples for such barrier functions
with m constraints:

B(P) = −
m∑
i=1

− ln (gi(P)) (26)

and

B(P) =
m∑
i=1

1

(gi(P))r
(r = 1, 2, 3, . . .). (27)

In contrast with the penalty method the fitting program using the barrier method
may not get out of the domain defined by constraints. (This is not quite the case
working numerically.) This feature may be especially useful, if the calculated

16

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 2: Demonstration of artificial local minimum arising because of constraint
on a contour plot, where the contours denote decreasing levels approaching the
real minimum C. Without the bound represented by line Γ for parameter P1, the
fitting started from A would be finished in C, but because of bounds it will be
finished in B.

spectrum as a mathematical function of parameters has a finite domain, out of
which we may get into unpredictable problems.

The third method handling the constraints is quite different. We use our fitting
method for problems without constraints, but we check, in each iteration step
whether we are out from the feasible region. If we are out, we continue with the
nearest parameter vector on the boundary on the feasible set and if the method
uses also gradient we continue with the component of the gradient projected on
the boundary. This method is almost the projected gradient method [e.g. see ref.
15], but may also be used in case of optimization methods without derivatives.
This projection method is much faster, than the barrier or penalty method, but it
may have its own problems. If some constraint cuts through a bend belonging to
the ‘path’ obtained connecting the steps of the optimization method, we may get
an artificial local minimum on the boundary, where the method may stuck (see
Fig. 2). In case of a very complex, meandering path, lot of constraints, parameters
to fit, the number of such artificial local minima is multiplied. Therefore, we
should be cautious using constraints. Although the usage of the penalty and barrier
methods is a bit safer in this regard, but this problem may also arise there.

To use the penalty or barrier function method in case of ‘vector statistics’
defined by (16 - 20) should be modified, during fitting. E.g. in case of penalty

17

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

function, we should replace in these equations κi by

κ′
i =

√
κ2
i +

qk
n
Z(P), i = 1, . . . , n. (28)

2.6.2 Distributed parameters (using maximum entropy principle)

To fit problems with distributed parameters, we minimize the fitted statistic χ2
∗

and maximize the entropy S of the distribution (see subsection 2.3), therefore we
minimize χ2

∗−S. As we prefer positive definite objective function f obj, remember
on vector statistics defined in (16-20), instead of this we minimize

f obj = χ2
∗ + Smax − S = χ2

∗ + lnN +
N∑
i=1
hi>0

hi lnhi, (29)

as S is maximal if hi =
1
N

. If we have distributed parameters, we sum the en-
tropies of the m independent distributions

f obj = χ2
∗ +

m∑
j

lnNj +

Nj∑
i=1

hj,i>0

hj,i lnhj,i

 . (30)

The ‘vector statistics’ defined by (16-20) should be modified similarly to (28), i.e.
we should replace in these equations κi by

κ′
i =

√
κ2
i +

1

n
(Smax − S), i = 1, . . . , n. (31)

The penalty (or barrier) function can be added the same way too.
In order to fulfill automatically the constraints Ri ⩾ 0, hj1,...,jn ⩾ 0 and∑
hj1,...,jn = 1 (see subsection 2.3), we fit instead of these parameters πR

i , πh
j1,...,jn

and calculate from these R and h using the formulae:

Ri =
(
πR
i

)2
(32)

hj1,...,jn =

(
πh
j1,...,jn

)2∑(
πh
j1,...,jn

)2 , (33)

which give the definition of ‘π’ parameters as well. This is working correctly, but
sometimes, we may experience a bit different behavior fitting these distribution
parameters compared to the normal parameters.

18

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

2.6.3 Rescaling parameters

The expected order of magnitude may also be a helpful information during opti-
mization (fitting), as there are methods (most of them) which do not work properly
(they may become even divergent) for parameters of different order of magnitude
(see fit using rescaling demo). In these cases we can rescale the parameters P
by dividing each Pi by the corresponding order of magnitude mi and optimiz-
ing the modified objective function fm(Pm) = f(P), according to the rescaled
parameters Pm

i = Pi/mi.
The parameter bounds give the order of magnitude, only if the signs of the

upper and lower bounds are identical, that is the main reason, why the magnitude
should be provided by the user separately.

In the program FitSuite, there are some ‘corrections’ which take into account
the bounds as well. If Pmax

i Pmin
i > 0, i.e. the bounds have the same sign, then the

modified scaling factor will be

m′
i = min{max[mi,min(

∣∣Pmin
i

∣∣ , |Pmax
i |), λmin],max(

∣∣Pmin
i

∣∣ , |Pmax
i |), λmax},

(34)

and if Pmax
i Pmin

i < 0, then

m′
i = min{max[mi, λ

min],max(
∣∣Pmin

i

∣∣ , |Pmax
i |), λmax}, (35)

where λmin and λmax are the Minimum scale and Maximum scale, respectively,
which can be changed by the user in FitSuite.

In FitSuite it is used only if the option Scale parameters is checked.

2.6.4 Parameter resolution, minimum step width

Sometimes, it is useful to have a minimum step width for the fitted parameters,
as then it can be avoided to get in a long iteration cycle, where we make a lot
very short steps. Therefore, each real parameter has such a value which is called
Resolution in the program interface.

In FitSuite it is used only if the option Use minimum step width is checked (it
has no effect in case of the genetic algorithm). Setting this we may get close to the
minimum faster. And thereafter we can get the more accurate value by switching
of the option Use minimum step width. In practice we check each step ∆pi of the
algorithm (corresponding to the i-th free parameter) and we replace it with a step
of minimum step width ∆pmin

i according to:

∆p∗i =

{
sgn(∆pi)∆pmin

i if θ∆pmin
i < |∆pi| < ∆pmin

i

∆pi otherwise , (36)

19

http://www.fs.kfki.hu/Demos/FittingImportanceOfScaling.htm

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

where 0 < θ < 1 is the Minimum step width threshold factor used to avoid steps
with minimum step widths in case of 0 or very small steps. If the set parameter
resolution values are proved to be inappropriate, too small or too large, but their
ratios to each other are acceptable, then the user can change them by using a
multiplication factor, or a geometric sequence of multiplication factors and choose
the best fit.

Besides this, the parameter resolution has another use related to the plotting of
the fitted statistics according to a parameter(s), as the points in which we calculate
are determined by the parameter bounds and resolution.

2.6.5 Numerical derivatives

Usage of methods using or not using derivatives is another question we should ad-
dress a bit. Mathematicians usually assume, that we have objective functions,
whose derivatives are known, therefore most of the optimization method uses
them as well. The problem is, that in practice we usually do not have the deriva-
tives in case of complex problems, as we do not have an analytical function, but
we have algorithms, which may use a lot of numerical (iterative) algorithms al-
ready (e.g. determining eigenvalues in quantum mechanical problems, as Möss-
bauer line positions and line strengths calculated from Hamiltonian), and we have
a lot of parameters. Therefore, calculating the derivatives requires tremendous
additional work for which we usually do not have time and it may not be worth
either. Still, we should provide the derivatives for the methods requiring it, there-
fore we should determine them numerically. The problem is, that because of the
finite computer representation of the numbers and because it needs dividing of a
number with a small number, numerical differentiation is dangerous, therefore it
is avoided in numerical computations whenever possible.

The method implemented by us uses the same trick, as the Romberg‘s method
for integration (see [page 140 in section 4.3 of ref. 9 available at http : / / www.
nrbook . com], or wikipedia5), to get high precision derivatives. We know, that

f(x0 + h) = f(x0) +
∞∑
i=1

hi di

dxif(x0), therefore using the notation

D0
hf(x0) =

f(x0 + h)− f(x0 − h)

2h
=

d

dx
f(x0) +

∞∑
i=1

h2i d
2i+1

dx2i+1
f(x0)

=
d

dx
f(x0) +O(h2),

(37)

where we use the big O notation6, O(h2) should be read as order of h2. We can

5http://en.wikipedia.org/wiki/Romberg’s method
6http://en.wikipedia.org/wiki/Big O notation

20

http://www.nrbook.com
http://www.nrbook.com
http://en.wikipedia.org/wiki/Romberg's method
http://en.wikipedia.org/wiki/Big O notation

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

eliminate the higher order terms, as in Romberg integration. E.g.:

D1
hf(x0) =

4
f(x0 + h)− f(x0 − h)

2h
− f(x0 + 2h)− f(x0 − 2h)

4h
3

=
4D0

hf(x0)−D0
2hf(x0)

4− 1
=

d

dx
f(x0) +O(h4).

(38)

Generally we may use

Dk>0
h f(x0) =

4kDk−1
h f(x0)−Dk−1

2h f(x0)

4k − 1
=

d

dx
f(x0) +O(h2k). (39)

In order to calculate with accuracy O(h2k) we need 2k function evaluation, simu-
lation

(
f(x0 − 2kh), f(x0 − 2k−1h), . . . , f(x0 + 2k−1h), f(x0 + 2kh)

)
for deriva-

tives and one to get f(x0), which may be slow the fitting very much. If we fit sev-
eral parameters and therefore we have to calculate several partial derivatives, the
program will slow even further. And even then in general case we cannot guaran-
tee, that the function has not a very great high order derivative, which deteriorates
everything. We may check the convergence comparing different order of approxi-
mations. E.g. we may accept and stop calculating approximations of higher order
if ∣∣Dk

hf(x0)−Dk−1
h f(x0)

∣∣ < C
(∣∣Dk

hf(x0)
∣∣+ ∣∣Dk−1

h f(x0)
∣∣) , (40)

where 0 < C < 1 is a small number giving the user required precision. It is useful
to have a maximum for the order of approximations (In the program this appears
as Maximum difference order), as numerically we cannot take h arbitrarily small
(at least not without extra work and computation time which is the cost of using a
library using numbers with arbitrary precision). The most plausible choice for h
would be |x0|ε (for x0 ̸= 0) which is defined as 1 + ε being the smallest number
which may be differentiated from 1 for a given machine precision, but the user
may have other choice by changing Initial step factor, which corresponds to h.

2.7 Subspectrum
Sometimes it is useful to see what is the contribution of the parts of the studied
system to the whole spectrum. Therefore, Mössbauer spectroscopists devised the
concept of subspectrum. In Mössbauer spectroscopy the contributions of different
sites (atomic environments of the Mössbauer isotope) of the sample are added up
weighted by their concentration calculating the ‘absorption coefficient’ used to
determine the spectrum of the system. Therefore, plotting spectrum and subspec-
tra Fig. 3, i.e. the spectra calculated taking into account only one (or a few, but not
all) of the sites, we may see which site is corresponding to a specific peak, etc.

21

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 3: Two subspectra s1, s2, the total calculated Mössbauer spectrum and the
corresponding data set.

The subspectrum in FitSuite is a spectrum, where some of the physical ob-
jects of the studied system are not taken into account. This concept may also be
helpful (in better understanding of the studied physical system) in cases different
from Mössbauer spectroscopy, even if the whole spectrum cannot be obtained as
weighted sum of single contributions, subspectra. (see subspectrum demo)

3 Working with FitSuite
In the following we try to show the features, the usage of the program in an or-
der, as a new user should go step by step through the different interfaces of the
program.

3.1 Starting a new project
Starting the program, the user can start a new project (File New Project) or
load (File Open) a previously saved one. The extension of the project files is
‘.sfp’ (simultaneous fit project). We can save our project anytime clicking File

Save. . . .
If we have a new (empty) project, we have to add models (theories in EFFI

terminology). This can be done in two ways. The user can load it from a ‘*.mod’

22

http://www.fs.kfki.hu/Demos/Subspectrum.htm
http://nucssp.rmki.kfki.hu/~spiering/

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 4: Model Editor: the part used to build up the structure represented by a
tree.

file (if there is such available, e.g.: such files may be created by exporting), or you
can click Add New Model and then can choose from a list. The model appears
with an initial name ‘Modeli’ (i = 0, 1, . . .) in the window Problems on the
left of the main window (see Fig. 4). You can change the name clicking on the
text ‘Modeli’ and typing the new name in this window. Please do not use white
spaces (space, tabulator etc.) in names in FitSuite, as it may have very queer
consequences. Currently only ASCII characters may be used in names. Using
other type of characters may have undesired side effects. (see model definition
demo)

3.2 Building up the model structure
On the right side of the main window (Fig. 4) should be seen a Model Editor
now. In this we can build up the hierarchical structure of the model.

On the top is always one object the experimental scheme. We can add other
objects to this (and to every object) with right clicking on it (them) and choos-
ing Add or Insert or Read and add from file from the arising pop-up
menu (the usage of Read and add from file is described in subsubsection 3.2.1).
If there is more than one possibility, you may choose by moving the mouse on

23

http://www.fs.kfki.hu/Demos/ModelEditing.htm
http://www.fs.kfki.hu/Demos/ModelEditing.htm
http://en.wikipedia.org/wiki/Pop-up_menu
http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 5: Model Editor: the part used to choose the correlation functions

Add In the current built in model types only the layers may be grouped.
Selecting them with shift + cursors or shift + mouse and right clicking on selection
you can choose Group from the pop-up menu. In case of the objects repre-
senting the groups the column labelled with Nrep contains the repetition number
telling us, how many times the elements of the group are repeated in the real phys-
ical system. This could be changed with right clicking on it in previous versions.
Now you can change it setting the corresponding integer parameter (see later).

In case of off-specular (synchrotron Mössbauer reflection) problems we have
to give the correlation functions between the domains belonging to different lay-
ers. The domains available at the level of scheme can be linked to the layers.
The correlation functions can be chosen with the help of graphical user interface,
which appears after clicking on tab with label "Correlation function" on the bot-
tom of the model editor (see Fig. 5).

3.2.1 Adding objects, models using xml like files

Sometimes it can be useful to add objects, or a whole model structure reading from
a file generated by some other program, macro, etc. It is obvious, that we need
some sort of file format convention to be able to do this. In this subsubsection, we
will see by examples, how this can be done in FitSuite and what file convention is
used.

In the directory examples/ReadingObjectsFromFile, we may find several ex-
amples, some of which will be described here as well. The order of the examples,
as it is explained in examples/ReadingObjectsFromFile/README, is not random,
it has didactic reasons. Some of the explanations will be available in the example

24

http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

files (which are also included in this manual) as comments.

1.) TwoSites.txt is the most simple example. To use this create a ‘Mossbauer-
Transmission’ model with a sample and at least a layer (or use a model available
of this type, e.g. examples/MossbauerSpectraFemtz/Fit.sfp). To add to the layers
the two sites defined in TwoSites.txt open the Model Editor right click on the name
of the chosen Layer and select from the pop-up menu Read and add from file ,
and open the file TwoSites.txt. Thereafter, we should see two new sites.

Example ‘xml’ file 1: TwoSites.txt (The symbol ↪→ notes the line breaks forced
by LATEX to fit the lines in the page. This symbol and the line numbers on the left
are not present in the file.)

1 //Comments as in C++ start with "//"
2 //Two sites with model type defaultSite. The names are s5 and s6. Hint::r will be 25 kG (for s5)

↪→ and 10 kG (for s6), Hint::theta 1 radian (for s5) and 2 radian (for s6), Hint::phi 5 radian (
↪→ for s5) and 6 radian (for s6). The units are kG and radian, because of historical reasons (
↪→ EFFI) these are the internal (default) units used in calculations.

3 //The other properties not listed here will have their default values.
4

5 <Site = defaultSite | List | Name, Hint::r, Hint::theta, Hint::
↪→ phi> //"Site" is the type name of the objects, as sites may belong to several model types,
↪→ that should be specified here too, and that is why we have the "= defaultSite", "=" is used as
↪→ separator.

6 //"List" shows that this is a list of sites and "|" symbols are separators, in another example we
↪→ will see cases in which here we have something else.

7 //Remark "| List |" and "| |" are equivalent as we will see in other examples.
8 //After the second "|" symbol the separator will be ",". The "Name" specifies, that in the first

↪→ column we will provide the names of the sites, as we can see below s5 and s6. If we would
↪→ delete "Name," and s5 and s6 below, then the program would generate names automatically
↪→ . Names are also generated automatically in cases, when there is already an object with a
↪→ given name.

9 //Hint::r is expected in the second column, Hint::theta in the third and Hint::phi in the fourth.
10

11 //Each line will correspond to an object (here Site), therefore (ATTENTION) do not break lines
↪→ corresponding to one object. The columns are separated by white spaces, i.e. space(s) and/
↪→ or tabulator(s).

12 s5 25 1 5 //The first site should be named s5. If there is already an object named s5 in the
↪→ model, then s5 it will be complemented with a suffix, i.e. an automatically generated number
↪→ , to avoid name collision. Hint::r will be 25 kG, Hint::theta 1 radian, Hint::phi 5 radian.

13 s6 10 2 6 //The second site should be named s6, and Hint::r will be 10 kG, Hint::theta 2
↪→ radian, Hint::phi 6 radian.

14 </Site> //Like in html/xml <Site...> is ended here.

2.) ThreeSites.txt is similar to TwoSites.txt, but here we have sites with different
model types, i.e. the calculation of the corresponding subspectra and used param-
eters are different.

25

http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Example ‘xml’ file 2: ThreeSites.txt (The symbol ↪→ notes the line breaks forced
by LATEX to fit the lines in the page. This symbol and the line numbers on the left
are not present in the file.)

1 //It is similar to TwoSites.txt, but here we have different type of sites.
2 <Site=doubletSiteWPI | List | Name, G_width::[1], G_width::[2],

↪→ rel_intensity::[1], rel_intensity::[2], splitting> //Here we have
↪→ two doublet sites

3 s7 1 1 1 2 2
4 s8 2 2 2 1 3
5 </Site>
6

7 <Site=defaultSite | List | Name, Cnz_n, is_shift, eff_thickness,
↪→ G_width, L_width, Hint::r, Hint::theta, Hint::phi, EFG::zz,
↪→ EFG::eta, EFG::phi, EFG::theta, EFG::psi> //site using the solution of
↪→ the hamiltonian

8 s9 2 -0.01 2 2 5 10 1 0 .22 .3 -0.12 1.2 .05
9 </Site>

3.) In ThreeSitesUnit.txt, the units are also given for some of the properties +
components (parameters). Otherwise, the program assumes that the parameters
read in are in the units used by FitSuite in internal calculations. Reading param-
eters for which the unit is given does not mean, that in the parameter list it will
appear in this unit, as it is converted by the program to the internal units.

Example ‘xml’ file 3: ThreeSitesUnit.txt (The symbol ↪→ notes the line breaks
forced by LATEX to fit the lines in the page. This symbol and the line numbers on
the left are not present in the file.)

1 //It is similar to ThreeSites.txt, but here we have units for some of the parameters.
2

3 <Site=doubletSiteWPI | List | Name, G_width::[1], G_width::[2],
↪→ rel_intensity::[1], rel_intensity::[2], splitting>

4 s7 1 1 1 2 2
5 s8 2 2 2 1 3
6 </Site>
7

8 //The units are given in parentheses "()" following the name of the corresponding property::
↪→ componentname.

9 //The names of the units can be found by using the "Command−line" interface of FitSuite (in a
↪→ tab on the bottom part). We need the command "listUnitsOf", the description of which can
↪→ be found in the UserManual.pdf available in doc/pdf directory. (The "Parameter filtering"
↪→ and parts of the "Command−line interface" sections in the UserManual.pdf may be needed
↪→ for understanding, especially the introductory parts.)

10 <Site=defaultSite | List | Name, Cnz_n, is_shift, eff_thickness,
↪→ G_width, L_width, Hint::r (mT), Hint::theta (deg), Hint::phi

26

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

↪→ (deg), EFG::zz, EFG::eta, EFG::phi(rad), EFG::theta(deg), EFG
↪→ ::psi (deg)> //here Hint:r is given in mT, therefore it will be 10mT, Hint::theta in
↪→ degree, and therefore it will be 45 deg, similarly EFG::psi 30 deg, but EFG::phi −1 radian.

11 s9 2 -0.01 2 2 5 10 45 90 .22 .3 -1 60 30
12 </Site>

4.) LayerThreeSites.txt Here we have a layer containing sites. This should be
added in the Model Editor by right clicking on the name of the Sample and select-
ing from the pop-up menu Read and add from file ,

Example ‘xml’ file 4: LayerThreeSites.txt (The symbol ↪→ notes the line breaks
forced by LATEX to fit the lines in the page. This symbol and the line numbers on
the left are not present in the file.)

1 //Here we have a layer containing sites
2 <Layer |List| thickness> //The layer has automatic name and the thickness is set
3 <> //Without this (and </> below) see LayerThreeSitesBad.txt 3 layers would be generated. The

↪→ first one would contain the sites s5 and s6 and it would have the default layer thickness 0.
↪→ The second layer would contain the site s7 and would have 0 thickness. And the third one
↪→ would not contain any site, but its thickness would be 6.73 ångström.

4 //The <> </> ‘brackets’ show, that the lines between them belong to a single layer.
5 <Site=defaultSite | List | Name, Hint::r, Hint::theta, Hint::phi>
6 s5 25 1 5
7 s6 10 2 6
8 </Site>
9 <Site=defaultSite | List | Name, Cnz_n, is_shift, eff_thickness,

↪→ G_width, L_width, Hint::r, Hint::theta, Hint::phi, EFG::zz,
↪→ EFG::eta, EFG::phi, EFG::theta, EFG::psi>

10 s7 2 -0.01 2 2 5 10 1 0 .22 .3 -0.12 1.2 .05
11 </Site>
12 6.73 //The layer thickness will be 6.73 ångström.
13 </>
14 </Layer>

5.) LayerThreeSitesBad.txt It is a bad version of LayerThreeSites.txt created to
explain, why we need empty "<>" "</>" strings. If we read in both and compare
the results, it is obvious.

Example ‘xml’ file 5: LayerThreeSitesBad.txt (The symbol ↪→ notes the line
breaks forced by LATEX to fit the lines in the page. This symbol and the line
numbers on the left are not present in the file.)

1 //For explanation see LayerThreeSites.txt
2 <Layer || thickness>
3 <Site=defaultSite | List | Name, Hint::r, Hint::theta, Hint::phi>
4 s5 25 1 5

27

http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

5 s6 10 2 6
6 </Site>
7 <Site=defaultSite | List | Name, Cnz_n, is_shift, eff_thickness,

↪→ G_width, L_width, Hint::r, Hint::theta, Hint::phi, EFG::zz,
↪→ EFG::eta, EFG::phi, EFG::theta, EFG::psi>

8 s7 2 -0.01 2 2 5 10 1 0 .22 .3 -0.12 1.2 .05
9 </Site>

10 6.73
11 </Layer>

6.) In SourceSample.txt, we have a source and a sample. This should be added in
the Model Editor by right clicking on the name of the "root object" (i.e. which con-
tains everything) and selecting from the pop-up menu Read and add from file .
In this case, it is important, that we need a model which does not contain any-
thing except of the root object. As a Mössbauer transmission model may have
only one source and one sample.

Example ‘xml’ file 6: SourceSample.txt (The symbol ↪→ notes the line breaks
forced by LATEX to fit the lines in the page. This symbol and the line numbers on
the left are not present in the file.)

1 //Here we have a source containing a singlet site, and a sample with one layer with 3 sites.
2 //IMPORTANT: In this case, we need a model which does not contain anything except of the root

↪→ object. As a Mössbauer transmission model may have only one source and one sample.
3 <Source || Name>
4 <>
5 source //The name of the Source
6 <Site = singletSiteWPI || Name, eff_thickness, L_width>
7 srcSite 1 1 //The source is a singlet
8 </Site>
9 </>

10 </Source>
11

12 <Sample || Name>
13 <>
14 <Layer |List| thickness> //The layer has automatic name and the thickness is set.
15 <> //Without this (and </> below), see LayerThreeSites.txt and LayerThreeSitesBad.txt, 3 layers

↪→ would be generated. The first one would contain the sites s5 and s6 and it would have the
↪→ default layer thickness 0. The second layer would contain the site s7 and would have 0
↪→ thickness. And the third one would not contain any site, but its thickness would be 6.73 å
↪→ ngström.

16 //The <> </> ‘brackets’ show, that the lines between them belong to a single layer.
17 <Site=defaultSite | List | Name, Hint::r, Hint::theta, Hint::phi>
18 s5 25 1 5
19 s6 10 2 6
20 </Site>

28

http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

21 <Site=defaultSite | List | Name, Cnz_n, is_shift, eff_thickness,
↪→ G_width, L_width, Hint::r, Hint::theta, Hint::phi, EFG::zz,
↪→ EFG::eta, EFG::phi, EFG::theta, EFG::psi>

22 s7 2 -0.01 2 2 5 10 1 0 .22 .3 -0.12 1.2 .05
23 </Site>
24 6.73 //The layer thickness will be 6.73 ångström.
25 </>
26 </Layer>
27 absorber//The name of the Sample
28 </>
29 </Sample>

7.) In MossbauerModel.txt, we create a "MossbauerTransmission" model. To use
this select the menu item Add Model from XML file , and choose this file.

Example ‘xml’ file 7: MossbauerModel.txt (The symbol ↪→ notes the line breaks
forced by LATEX to fit the lines in the page. This symbol and the line numbers on
the left are not present in the file.)

1 //Here we have a whole model
2 //To use this select the menu item: "Add | Model from XML file", and choose this file.
3 <Model=MossbauerTransmission || Name, base> //A model should start like this

↪→ instead of the object type name likes "Site" we have always "Model" and after = the model
↪→ type name of the model, here "MossbauerTransmission". Then we can specify the columns
↪→ containing the name of the root object, and the properties like "base" here

4 <>
5 TreeRoot 70000 //As there is only one root object there is no use to have here more than a

↪→ single line.
6

7 <Source || Name>
8 <>
9 source //The name of the Source

10 <Site = singletSiteWPI || Name, eff_thickness, L_width>
11 srcSite 1 1 //The source is a singlet
12 </Site>
13 </>
14 </Source>
15

16 <Sample || Name>
17 <>
18 <Layer |List| thickness> //The layer has automatic name and the thickness is set
19 <> //Without this (and </> below) see LayerThreeSitesBad.txt 3 layers would be generated. The

↪→ first one would contain the sites s5 and s6 and it would have the default layer thickness 0.
↪→ The second layer would contain the site s7 and would have 0 thickness. And the third one
↪→ would not contain any site, but its thickness would be 6.73 ångström.

20 //The <> </> ‘brackets’ show, that the lines between them belong to a single layer.
21 <Site=defaultSite | List | Name, Hint::r, Hint::theta, Hint::phi>
22 s5 25 1 5

29

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

23 s6 10 2 6
24 </Site>
25 <Site=defaultSite | List | Name, Cnz_n, is_shift, eff_thickness,

↪→ G_width, L_width, Hint::r, Hint::theta, Hint::phi, EFG::zz,
↪→ EFG::eta, EFG::phi, EFG::theta, EFG::psi>

26 s7 2 -0.01 2 2 5 10 1 0 .22 .3 -0.12 1.2 .05
27 </Site>
28 6.73 //The layer thickness will be 6.73 ångström.
29 </>
30 </Layer>
31 absorber//The name of the Sample
32 </>
33 </Sample>
34

35 </>
36 </Model>//<=MossbauerTransmission>

8.) SuperMirrorBase.txt explains the usage of TypeList and repetition groups. It
contains layers of a neutron super mirror. To use it, create a neutron reflection
model with an incoherent part, in the Model Editor right click on the name of
the incoherent part and select from the pop-up menu Read and add from file .
TypeList is not working properly in case of complete models (like in Moss-
bauerModel.txt). It was tested only as in SuperMirrorBase.txt for neutron
reflection, it may not work for other model types.

Example ‘xml’ file 8: SuperMirrorBase.txt (The symbol ↪→ notes the line breaks
forced by LATEX to fit the lines in the page. This symbol and the line numbers on
the left are not present in the file.)

1 //Number of layers: 66
2 //Number of layer groups: 5
3

4 <Layer |TypeList| Name, scatteringLengthDensity::.re,
↪→ scatteringLengthDensity::.im > //This is a type list, as "TypeList" shows
↪→ between the two "|" symbols.

5 //Here we define two layer types Ni and Ti, by their scattering length densities. In neutron
↪→ reflectometry, this is the parameter which is material specific.

6 Ni 9.40572 -0.00115824
7 Ti -1.949 -0.000975259
8 </Layer>
9

10 <Layer |List| , TypeName, thickness > //The first column is not used as there is
↪→ only space before the first ",". The second column contains the TypeName by which we refer
↪→ to their definitions above in the TypeList. The scattering length densities of the layers and
↪→ their names will be set accordingly.

11 0 Ni 2601.62
12 1 Ti 63.1249

30

http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

13 2 Ni 451.291
14 3 Ti 126.25
15 <Repeat |group| 5 > //This is a repetition group with repetition number 5. The name of

↪→ the group will be "group" complemented with a suffix (an automatically generated number)
↪→ if it is necessary, i.e. there is already an object named group.

16 4 Ni 130.27
17 5 Ti 92.5466
18 </Repeat>
19 <Repeat |group| 7 > //This is a repetition group with repetition number 7
20 6 Ni 106.728
21 7 Ti 82.8688
22 </Repeat>
23 <Repeat || 9 > //The name of the group will be "noname" complemented with a suffix (an

↪→ automatically generated number) if it is necessary, i.e. there is already an object named
↪→ noname.

24 8 Ni 93.4042
25 9 Ti 76.1495
26 </Repeat>
27 <Repeat |Gruppe| 11 > //The name of the group will be "Gruppe" complemented with a

↪→ suffix (an automatically generated number) if it is necessary, i.e. there is already an object
↪→ named Gruppe.

28 10 Ni 84.3988
29 11 Ti 71.0282
30 </Repeat>
31 12 Ni 2601.62
32 </Layer>

3.2.2 Copying and inserting objects

There is another useful method to add new objects. If we select an object (or
objects) in the Model Editor and right click on this selection, then in the pop-
up menu will appear an item Copy . Choosing this menu item, the selected
objects are copied, and thereafter their copies can be inserted before a selected
object of the same type by right clicking on the object name and selecting the
menu items Insert a copy or Insert copies in the pop-up menu.

3.3 Adding data
We can import from files the experimental data selecting the menu item Add

Data , after this we can choose the format of the file e.g.: ‘one column (y)’,
‘two columns (x,y)’, ‘three columns (x,y,yerr)’, ‘three columns (x1,x2,y)’, ‘four
columns (x1,x2,y,yerr)’, ‘MCA file’, ‘Data series (x,{y})’, ‘compact’ (I name so,
as I could not find better name, the format:

0 68348 68699 68315 68375 68253

31

http://en.wikipedia.org/wiki/Pop-up_menu
http://en.wikipedia.org/wiki/Pop-up_menu
http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

5 68198 68508 67983 68114 68041
10 67436 67776 68123 68143 68480.

E.g. see the files 4k0t.dat, 4k3t.dat, 4k5t.dat in directory adatok), etc.
In this dialog, we may give:

• The line with which the reading begins (labelled with First line to read in).
The numbering starts with 0.

• The number of lines we want to read in (labelled with Number of lines to
read). If it is 0 then it will read all.

• A string (labelled with Until text), this of course could be a number, until
whose first occurrence (after the line which was given in First line to read
in) we want to read in the lines.

• A string with which the comments start (labelled with Comments start
with).

• The decimal delimiter, as sometimes we have data files which have decimal
commas instead of decimal points, or vice-versa. (labelled with Decimal
delimiter is).

• In case of compact format we can add:

– the Number of data columns, in the above mentioned example this is
5, as the first (0-th) column (0, 5, 10, . . .) gives the number of data in
former lines. (see reading ASCII data file demo)

– and the First data column, which in the example is 1.

• We may Choose columns. This option can be useful, if we have a different
order of columns, or we have for example the results of several experiments
in the same file, in different columns. In such a case, we can specify by
column number, that e.g. the 4th column contains the independent (x), the
2nd dependent variable (y), the 15th the uncertainty (yerr) and so on.

In case of ‘Data series (x,{y})’, we may create several data sets specifying
several dependent variable (y) columns (in the editbox labelled with Read
as {y} columns) by giving column ranges. E.g. -3, 5-7, 9, 15- will corre-
spond to the columns 0, 1, 2, 3, 5, 6, 7, 9, 15, 16, . . . , last column. As
it can be seen from this example we can have several ranges separated by
commas. And a range can be a single number or two numbers separated by
a minus sign, if one of the numbers is missing that corresponds to first (-3
⇔ 0-3) or last column (15- ⇔ 15-Last). The first column is indexed by 0.

32

http://www.fs.kfki.hu/Demos/ReadingData.htm

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 6: The dialog used to read in data sets in case of data series.

• We may specify a row in which we have dependent variable column labels.
These labels may be used to generate automatic names for the data sets.
E.g. we have the number 1.357412 in row 2 column 3 (corresponding to the
dependent variable of our new data set), then we will have a data set named
Data1.357412. These feature can be especially useful in case of data series
and/or if we have a lot of data sets to fit simultaneously, and we have a row
containing labels or data which could be used as a label. If we would like to
use only a part of this label, to have a shorter name, we may e.g. say that we
would use only the first 4 characters of the label, and then in our example
the name of the data set will be Data1.35.

As it can be seen in Fig. 6, on the bottom of the dialog there is a box used
to preview the data file, here we can check whether our settings are correct
or not. In top left corner there is a spin box, where we can chose the row
number according to which the column numbers appear on the top of the
previewing part. This is useful if we have a lot of columns, and the align-
ment of the columns in the different rows is far from perfect, as in Fig. 6

33

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

apparently is the case, and we have a column with a specific label in mind,
or we would like check which row in our column a ‘nasty’ value like a NaN
appears.

In case of cloning, the label can be used naming cloned models and/or pa-
rameter, and if the label is a number, it can also be used as a parameter,
e.g. setting simulation/fit parameter values. For further details see the part
concerning cloning starting on page 63.

• We may reverse the row order, if the row order available in the data file is
not what FitSuite expects, e.g. decreasing independent variables values.

• We may convert units of the columns, as in FitSuite the data columns are
expected in predefined units, which may not agree with the units available
in the data files.

• In case of ‘MCA file’ format (MCA stands for Multi Channel Analyser), as
it can be seen in Fig. 7, we may have several parameters (Number of chan-
nels, first channel, last channel, and other calibration parameters), which are
read from the comments available in the header of the file. These parameters
can be overwritten by the user, in case the program interpreted something
incorrectly.

Presently, except of some cases mentioned above, the program does not read
parameters, constants from data file.

Scans from Certified Scientific Software’s specTM (X-Ray Diffraction and
Data Acquisition software) files can be obtained in another way from version
1.4.1. on. Open spec file clicking (File Open spec File), wereafter a window
should appear, where you may (filter) select the scans and extract the chosen data
sets. If the required spec file has already been opened, it is enough to choose the
menu item (View Show Open spec Files), to have this window. Extraction types
may be defined, changed. For further details see this spec file demo.

The experimental data have some distribution. E.g. data obtained using parti-
cle counters usually have Poisson distribution. ‘Ordinary’ experimental data are
expected to have Gaussian distribution. Fitting the experimental data, we have
to know, which distribution should be used as the fitted statistics should be cho-
sen accordingly. The type of the distribution can be chosen here or later. If the
imported data contains uncertainties too we may set its type (root mean square
or mean square) as well. Sometimes the raw data is already preprocessed. E.g.
neutron reflectometrists usually normalize their data, as they measure reflection,
which has a maximal value of 1. The problem with this preprocessing is that in
case of Poisson distribution we throw out this way information (see subsubsection
2.4). Therefore here you can tackle this problem by providing the normalization

34

http://www.certif.com
http://www.certif.com/spec.html
http://www.fs.kfki.hu/Demos/specFile.htm

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 7: The dialog used to read in data sets in case of MCA file format.

factor if there was such one. This piece of information may be provided later as
well.

Right clicking in the window Problems on the name of the new dataset, we can
add the data to the chosen model. At present, the user should know which format
is required, accepted by a given type of model. If you choose a wrong one it
will warn you only with malfunctioning or with segmentation fault error message.
Data set may be replaced right clicking on the name of data set and clicking on

Replace Data in the arising menu. This is useful if there was a mistake made
by the user choosing, reading the data set, or after cloning (see later).

Some data points may be ex(in)cluded from the fit selecting with shift + cursor

and right clicking. This can be used if you are sure that some values are badly
measured. The exclusion is not working correctly for all the models at the mo-
ment, do not use it in case of Mössbauer and stroboscopy spectra. From version

35

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

1.0.3 on you may exclude data points according to their values as well.
The user may also add his(er) notes to the data after clicking on button Notes

at the bottom of the data window.
The above mentioned statistical properties of the data set can be changed click-

ing on button Statistical Properties at the bottom of the data window. Here you
can choose the distribution of the data set. Set the normalization factor, if there
is such one (preprocessed data). Besides the user may choose the statistic, whose
minimum has to be found by fitting the parameters, and the GOF (goodness of fit)
statistic. For further details see 2.4.

3.4 Changing parameters, matrices
From version 1.0.3 the parameters and transformation matrices are generated au-
tomatically. With Edit Regenerate Matrices you may generate them, if there is
some problem, or you want to set the transformation matrices starting from the
initial ones. The parameters and the matrices may be changed with Edit For
the program generated parameter (variable) names the following name convention
is used:

• For the parameters of simple physical objects:
ModelName=>ObjectName:>PropertyName::ComponentName.
E.g.: FirstProblem=>SecondIncoherentFraction:>ExternalMagneticField::x.

• In case a linked objects (e.g.: domains in off-specular problem):
Model=>ParentObject-~>LinkedObject:>Property::Component.
E.g.: FirstProblem=>ithLayer-~>jthDomain:>size.

• In case of correlation function parameters of two linked objects:
Model=>FirstParent-~>FirstLinkedObject,SecondParent-~>SecondLinkedObject>>
FunctionTypeName:>Property::Component.
E.g.: FirstProblem=>ithLayer-~>jthDomain,lthLayer-~>mthDomain>>Gauss:>sigma.

In Parameter Editor (Edit Fitting Parameters), everything is included what
is not integer independently on being constant or not. The parameters with check
boxes (change them by double click) filled with ‘x’ or ‘

√
’ (depending on sys-

tem settings) denote the free parameters. The constants do not have check boxes,
thus they cannot be freed. There are calibration constants, user defined constants
and model defined constants. Calibration constants have a label ‘ca’ instead of
check box. They may be fitted right clicking on the check box or selecting the ap-
propriate calibration constants (shift + cursor) + right clicking and selecting

Let Not Be Constant from the arising menu. The user may set arbitrary parame-
ters to be constant, by choosing in this menu Let Be Constant . If the parameter

36

http://en.wikipedia.org/wiki/Check box
http://en.wikipedia.org/wiki/Check box
http://en.wikipedia.org/wiki/Check box
http://en.wikipedia.org/wiki/Check box
http://en.wikipedia.org/wiki/Check box

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 8: Parameter Editor

was not a calibration constant, the check box will replaced by ‘c’, these are the
user defined constants. There may be constants, which are never fitted, these are
denoted by label ‘cn’, these are the model defined constants. (see free/fix, make
constant parameter demo) To increase the transparency of the parameter list the
user may hide parameters, which (s)he thinks have the correct value and will not
be fitted. This can be done similarly to previous operations, just a different menu
item should be chosen. For obvious reasons free parameters may not be hidden
and hidden parameters may not freed. The hidden parameters may be seen press-
ing the proper button (or menu item) appearing after parameters were hidden. The
hidden parameters will appear with a different background color. This color may
be changed in the Editor Settings (Settings Editor Settings) (see hidding parame-
ters demo).

From version 1.0.3 the parameters may have units. In older project files they
will appear only after the command Edit Regenerate Matrices was given for the
program. (Sorrily with this the transformation matrices changed by the user will
be lost and should be made again.) The units may be changed several ways. Just
double clicking on the unit in the parameter editor, the unit may be changed. If
the button with an arrow is pressed down, not only the unit is changed, but the
parameter value is also converted from the previous unit to the new one. Editing
a parameter value with units, the unit may also be changed. In this case pressing
down the button with arrow, the new unit and value is set, there is no conversion.
If the button is not pressed down the unit remains the original one, but the value
will correspond to the selected value and unit converted to the original one. (see

37

http://en.wikipedia.org/wiki/Check box
http://www.fs.kfki.hu/Demos/FreeFixConstant.htm
http://www.fs.kfki.hu/Demos/FreeFixConstant.htm
http://www.fs.kfki.hu/Demos/HiddingFreeingParameters.htm
http://www.fs.kfki.hu/Demos/HiddingFreeingParameters.htm

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

parameter values and units demo) You may change the units of the minimum,
maximum and magnitude (the latter is used to rescaling) values as well. If these
units are identical with the unit of the parameter value, they are represented by
shortcut ~. The user is able to specify a bit the behaviour of unit editor in Settings

Editor Settings (see editor settings demo).
You can get some information about the parameters by first clicking Help

What is this? or pressing Shift + F1 , (on this the cursor icon should change to a
question mark), clicking thereafter on the parameter name in the editor a short help
should appear. Presently, this type of help is not complete, for some problems,
e.g.: stroboscopic mode problems there is nothing available.

The displayed numbers in Parameter Editor and in Transformation Matrix
Editor (Edit T Matrices) also are rounded to a few digits. If a number is longer
than that, the rounded number is displayed in blue (or other user set color) and
we can see the real (not rounded) value by pulling the mouse over that cell in
the editor and waiting until it appears in a tooltip. The user is able to specify the
number of the displayed digits, choose the precision, what he needs and a lot of
other options in Settings Editor Settings .

In current version, the matrices can be united, split, and the parameters can be
correlated, decorrelated and user defined parameters may be inserted (see subsec-
tion 2.2 and the demos of parameter correlation, decorrelation1, decorrelation2
and matrix split-unite).

The handling of integer parameters and the related integer transformation ma-
trices may be handled quite similarly. The main difference is, that there we have
to use the Integer Parameter Editor (Edit Integer Parameters) and similarly the
Integer Transformation Matrix Editor (Edit Integer T Matrices).

3.5 Parameter filtering
From version 1.0.5 in the edit box at the top of the Parameter Editor (in Integer
Parameter Editor too), the user may type in filter commands in order to view
only the parameters (s)he is interested in momentarily instead of scrolling to and
fro, looking hard for the parameters in a long list.

There are several simple filter commands available (see below) each is started
by character @ and is of the form @C A, where @C is the command word (which
may not contain white spaces) e.g. @, @fr, @m, @mt (see below). The com-
mand word is followed by a space as separator and the commands argument, here
denoted by A. The argument may be a single word or (as we will see) several
words combined by logical operations.

38

http://www.fs.kfki.hu/Demos/UnitsDegRadTkG.htm
http://www.fs.kfki.hu/Demos/NewParameterEditorSetting.htm
http://www.fs.kfki.hu/Demos/Correlate1.htm
http://www.fs.kfki.hu/Demos/Decorrelate1.htm
http://www.fs.kfki.hu/Demos/Decorrelate2.htm
http://www.fs.kfki.hu/Demos/SplitUnite.htm

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 9: Transformation Matrix Editor

3.5.1 Single word arguments, wildcards

Single word means, that it does not contain white spaces, but it may contain wild-
cards, which according to Unix convention are the following: * matches arbitray
number (⩾ 0) of characters, ? matches a single character, [. . .] sets of characters.
E.g.:

• @p thickness will filter all the parameters belonging to the properties
named thickness,

• @p thick* will filter all the parameters belonging to the properties
whose name begins with thick,

• @p thick?ess will filter all the parameters belonging to the properties
whose name begins with thick, which is followed by a single arbitrary
character and ends with ess,

• @p thick[nml]ess will filter all the parameters belonging to the prop-
erties whose name is thickness or thickmess or thickless.

Besides the filter editbox there are two checkboxes, one of them is labelled ‘Strict
pattern’. If this is not checked, which is the default case each of the single words
typed in by the user are automatically complemented by wildcard * at the be-
ginning and at the end, therefore the filtering condition is fulfilled even if the

39

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

corresponding word of the argument is contained by the proper name. Therefore
in this case we may type just e.g. @p hick instead of @p *hick*. Just to avoid
ambiguity we will assume strict pattern in this text.

If the other checkbox labelled Case sensitive is checked, the command argu-
ment is filtered case sensitively. The command word is always case sensitive.

3.5.2 Complex arguments, logical operators

Such ‘single words’ may be combined by logical operators: ‘!’ denotes negation,
‘ ’ (space) is interpreted as or, and ‘&’ as and operator. ‘(’, ‘)’ parentheses may
be used. In the explanation part of the following examples, squared parentheses
are used to highlight the precedence of the logical operators (i.e. evaluate first the
expressions inside parentheses, then execute negations, then and operations and
at last the or operations), which otherwise may be not quite clear. Besides, we
restrict the meaning of words ‘and’, ‘or’ to the sense of corresponding operations
used in the mathematical logic, especially, if these words are highlighted using
bold cases. E.g.:

• @p *thickness* & !eff_thickness will filter all the parameters belonging
to the properties whose name contains thickness, but not the one called
eff_thickness,

• @p *thickness* *Hint* will filter all the parameters belonging to the prop-
erties whose name contains thickness, or the one containing Hint. (If ‘Strict
pattern’ is checked we may also write instead of this @p thickness Hint,
as each single word is complemented by two * wildcards.)

3.5.3 Combination of commands using logical operators

The commands may also be combined by these operations, e.g.

• @fr *thick* & !*eff_thick* *Hi* & @m *Split* means filter [the free
parameters whose name [[contains the string thick and [does not contain
eff_thick]] or contains Hi]] and [on which the models whose names contain
Split depend].

• @fr *thick* !*eff_thick* *Hi* @m *Split* means filter the [free param-
eters whose name contains the string thick or [does not contain eff_thick]
or contains Hi] or [all the parameters on which the models whose names
contain Split depend].

A command ends when a new command @C2 A2 is started or when, in case
of a command inside parentheses, the closing parenthesis is reached. Therefore

40

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

and because the command @ is the parameter name filter command (see below),
if the command word is missing automatically the parameter name filter (i.e. @)
is inserted at the proper places, this is made internally, thus the user will see only
in its effect. E.g.:

• (abcd efgh) & ijkl is interpreted as @ (abcd efgh) & ijkl,

• (abcd efgh) & @m ijkl is interpreted as @ abcd efgh & @m ijkl,

• (@m abcd & efgh) ijkl is interpreted as (@m abcd & efgh) @ ijkl,

• (@m abcd (@fr) & efgh) ijkl is interpreted as (@m abcd @fr & @ efgh)
@ ijkl.

3.5.4 List of filter commands

Now, we will list commands words, which are filtering according different fea-
tures of the parameters:

• @ is the parameter name filter. Only in case of this command the @
character is optional if the text of the command starts with this. E.g.:
@ A1 @p A2 and A1 @p A2 and @p A2 @ A1 all have the same meaning,
but in case of @p A1 A2 the argument A2 belongs to the filter command
@p too it is just combined with A1 by the logical operation or. (see also
the former subsubsection)

• @m is the model name filter. @m A filters the parameters on which the
models whose name matches the condition given by the argument part A
depend.

• @mg is the model group name filter. @mg A filters the parameters on
which the models of the modelgroups whose name matches the condition
given by the argument part A depend.

• @mt is the model type name filter. @mt A filters the parameters on which
the models whose type name matches the condition given by the argument
part A depend. E.g. if we have a project containing models of X-ray and
neutron reflectometry, with this filter we may choose the parameters on
which the neutron problems depend using the command @mt Neutron-
Reflection.

• @smt is the submodel type name filter. @smt A filters the parameters on
which the submodels whose type name matches the condition given by the
argument part A depend. We should note that if the argument of @smt

41

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

matches the typename of a ‘main model’ the parameters of that will also
appear in the list.

• @o is the object name filter. @o A filters the parameters on which the
physical objects whose name matches the condition given by the argument
part A depend.

• @ot is the object type name filter. @ot A filters the parameters on which
the physical object types whose name matches the condition given by the
argument part A depend. E.g.: @ot Layer will filter the layer parameters.

• @oc is the object children filter. @oc A filters the parameters on which the
physical objects contained by objects whose name matches the condition
given by the argument part A depend.

• @op is the object parent filter. @op A filters the parameters on which the
physical objects containing the objects whose name matches the condition
given by the argument part A depend.

• @od is the object descendants filter. @od A filters the parameters on which
the physical objects (and their descendant objects in the tree structure) con-
tained by the objects whose name matches the condition given by the argu-
ment part A depend.

• @oa is the object ancestors filter. @oa A filters the parameters on which the
physical objects (an their ancestor objects in the tree structure) containing
the objects whose name matches the condition given by the argument part
A depend.

• @p is the property name filter. @p A filters the simulation/fit parame-
ters depending on model parameters belonging to a property whose name
matches the condition given by the argument part A. E.g.: @p thickness
will filter the parameters on which the properties named thickness depend.

• @pc is property component name filter. @p A filters the simulation/fit
parameters depending on model parameters belonging to a property com-
ponent whose name matches the condition given by the argument part A
depend. E.g.:

– @pc theta will filter the parameters on which the theta components
belonging to all the properties, which have such components, depend.

– @p Hint & @pc r will filter the parameters on which the r compo-
nents of the property Hint depend.

42

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

– @p chi & @pc .im will filter the parameters on which the .im compo-
nents (in this case the imaginary part) of the property chi depend.

• @s is the linked (symbolic) object name filter. @s A filters the parameters
on which the linked physical objects whose name matches the condition
given by the argument part A depend.

• @st is the linked (symbolic) object type name filter. @st A filters the pa-
rameters on which the linked physical object types whose name matches the
condition given by the argument part A depend.
E.g.: @st Layer-~>Domain or @st Layer*Domain will filter the parame-
ters on which layer-domain linked objects depend.

• @Cf is the correlation function name filter. @Cf A filters the parameters
on which the correlation functions whose name matches the condition given
by the argument part A depend.

• @T is the transformation matrix name filter. @T A filters the parameters
belonging to the transformation matrix whose name matches he condition
given by the argument part A. E.g.: @T roughness will filter al the simu-
lation/fit parameters available in the matrix called roughness.

3.5.5 List of filter commands with optional arguments

The former commands without arguments give the whole parameter list, i.e have
no effect, but there are commands which are meaningful without arguments too
(e.g.: @fr will filter all the free parameters):

• @og is the object group filter. @og A filters the parameters on which the
physical object groups whose name matches the condition given by the ar-
gument part A depend. Without arguments it matches all the parameters on
which the object groups depend.

• @fr filters the free parameters. (This has no sense in case of integer param-
eters.)

• @fi filters the fix parameters. (This has no sense in case of integer parame-
ters.)

• @c filters the constant parameters (calibration, model and user defined con-
stants). (This has no sense in case of integer parameters.)

• @ca filters the calibration constants. (This has no sense in case of integer
parameters.)

43

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• @cn filters the model defined constants. (This has no sense in case of inte-
ger parameters.)

• @cu filters the user defined constants. (This has no sense in case of integer
parameters.)

• @u filters the unit parameters (the parameters defining the units of other pa-
rameters, e.g.: , in case of X-ray reflectometries unit_chi, in case of neutron
reflectometries unit_Beff, unit_scatt_length_dens, in case of Mössbauer ef-
fect related problems u_thick_W, u_thick_A, natur_width).

• @d filters the distributed parameters (the parameters which have distribu-
tion, this filters both the range and the midrange of the distribution). (This
has no sense in case of integer parameters.)

• @dm filters the midranges of parameter distributions. (This has no sense in
case of integer parameters.)

• @dr filters the ranges of parameter distributions. (This has no sense in case
of integer parameters.)

• @de filters the decorrelated parameters (parameters which were recently
decorrelated and which are still highlighted in the parameter list).

• @Co filters the correlated parameters (simulation/fit parameters on which
several model parameters depend).

• @in filters the inserted parameters (parameters which were recently inserted
by the user and which are still highlighted in the parameter list).

• @gd filters the grid parameters (parameters determining the grid, i.e. the set
of the independent variable points for which the simulation is performed).

• @cugd filters the currently used grid parameters. @gd filters parameters
for all the possible grid types. @cugd filters only the parameters belonging
to the currently used grid.

• @hi filters the hidden parameters, which may be hidden by the user; or
disabled parameters hidden by the program if the corresponding option is
chosen in Editor Settings (Settings Editor Settings).

• @hu filters the parameters hidden by the user.

• @di filters the disabled parameters. The disabled parameters do not have
effect on the simulation result. Disabled parameters may arise for several
reason in the program. E.g.:

44

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

– We may have switches in our model which influences whether some
parameters have a role or not in calculations. This sort of disabled
parameters may become enabled changing the corresponding switch.

– Having a type of physical object as a child which renders some prop-
erties redundant, as in simulations we use the properties of this (these)
type of child(ren). This sort of disabled parameters may become en-
abled removing all instances of the corresponding object type.

• @rc filters the parameters changed by the user recently (since the last cal-
culation).

3.5.6 Complex examples

• *Hint* @fr *thick* & !*eff_thick* filters [the parameters whose name
contains Hint] or [the free parameters whose name contains thick, and not
eff_thick].

3.6 Command-line interface
At the bottom of the main window there is a command-line interface. This may
be useful in case of large projects, where the graphical user interface sometimes
needed too much clicking. This command-line interface uses extensively the pa-
rameter filters shown in the previous subsection. The arguments of the commands
are separated by the # character.

The commands may have options. The options are given by single charac-
ters following the command and a colon, e.g.: list:IR, where list is a command
and I and R are two options, or by keywords separated from each other by colons
and from the command by two colons. E.g. list:IR, list:::I:R list:::Integer:Real,
list::I:Real, list:I:Real, list:R:Integer are all equivalent, but for the incorrect com-
mands list::IR and list::IntegerReal we will have a message of unknown option
IR and IntegerReal, and similarly in case of list:Real we will have a messages of
unknown options e and l. A command may have default options, which are used
if the user gives the optionless command.

The default options will be denoted by placing them inside [] brackets in the
following command descriptions, and the optional options in () brackets. In case
of some commands we cannot use some of the options together, such exclusive
options will be separated by ⊕ in the description.

We have the following options, where the character for the option is high-
lighted with boldface:

• Real ⇔ execute the commands for the real parameters only,

45

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• Integer ⇔ execute the commands for the integer parameters only, which are
not group repetition numbers,

• Group ⇔ execute the commands for the group repetition number parameters
only,

• All ⇔ execute the commands for the real and integer based and group rep-
etition number parameters, this is equivalent to the options :IGR (or ::Inte-
ger:Group:Real),

• force ⇔ force execution of the command. This is useful, in cases where
the command may ask, warn the user whether (s)he wants really execute the
command, e.g. because a file would be overwritten,

• append ⇔ append to the end of the file the result of the command (e.g. the
commands export and exportMP),

• reverse ⇔ reverses the order in which the results are written in a file (e.g. the
commands export and exportMP).

The interface is still not complete, we have a lot of possible commands still in
mind. Currently we have the following commands:

• list(:[R]IGA) (or just li) F lists the parameters which match the parameter
filter F given as an argument. E.g. li @fr will list the free parameters, li or li:R
will list all the real parameters, li:I xx will list the integer parameters containing
xx.

• correlate(:[R]⊕I⊕G) (or just corr) F # (optional)S correlates the parame-
ters which match the parameter filter F given as first argument, and optionally
if the second argument is available sets the name S of the new parameter. If
‘# S’ is missing, the name of the new parameter will be the name one of the
correlated parameters. E.g. corr Fe & thickness & @mg X will correlate the
parameters, whose name contains the string ‘Fe’ and ‘thickness’ and belong to
model groups whose name contains X. corr Fe & thickness & @mg X # ABCD
will do the same, but the new parameter will have the name ‘ABCD’. corr:I
C_nzn & @mg X # F will correlate integer number based parameters.

• decorrelate(:[R]⊕I⊕G) (or just decorr) F1 # (optional)F2 decorrelates the
simulation/fit parameters which match the parameter filter F1 given as first ar-
gument. Optionally we may specify further by adding a second argument, a
model parameter filter F2 according to which we may choose the model pa-
rameters (which depend on the fit parameters given by F1). E.g. decorr Fe &
thickness & @mg X will decorrelate the fit parameters, whose name contains the
string ‘Fe’ and ‘thickness’ and belong to model groups whose name contains X.
By ordering decorr Fe & thickness & @mg X # Fe1 we will have probably

46

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

less new simulation/fit parameters, as we choose only those model parameters
whose name contains the string ‘Fe1’ to become fit parameters.

• hide(:[R]IGA) F hides the parameters matching the filtering condition F
(parameter distribution range parameters and free parameters may not be hid-
den).

• unhide(:[R]IGA) (or !hide) F unhides the parameters matching the filtering
condition F .

• free(:[R]) F frees the parameters matching the filtering condition F . Only
real parameters may be fixed or freed.

• fix(:[R]) F fixes the parameters matching the filtering condition F .

• setConstant(:[R]) (or just setCon) F sets constant the parameters matching
the filtering condition F .

• setVariable(:[R]) (or just setVar) F sets variable (the inverse of setConstant)
the parameters matching the filtering condition F .

• export(:[R]IGAfav) (optional)N # (optional)F {(optional)# Si # Si+1}
exports the simulation/fit parameters specified by the optional parameter filter
F in the file given by its path and name in the optional argument N . The
argument F may be followed by arbitrary number of argument pairs Si and
Si+1. In exported file the regular expressions using wildcards according unix
usage7 Si will be replaced by the string Si+1. E.g.:

– export results/trial.txt # (thickness Hint rough) & !Ni # X*g[hj]?X # y #
Fe # iron will export the real parameters whose names contain thickness or
Hint or rough, but not Ni in the file results/trial.txt, and in the file the regular
expressions X*g[hj]?X will be replaced by y and Fe by iron,

– export:I # (thickness Hint rough) & !Ni # X*g[hj]?X # y # Fe # iron will
do the same, but for integer parameters and the file name is chosen by the
program, it will be like ExportedSimFitParameters_0.txt.

– export # # X*g[hj]?X # y # Fe # iron will export all the real parameters in a
program chosen file, and it will make the same text replacements.

7In these regular expressions:
* An asterisk matches any number of characters in a name, including none.
? The question mark matches any single character.
[] Brackets enclose a set of characters, any one of which may match a single character at that
position.
- A hyphen used within [] denotes a range of characters.
\ The character backslash escapes the wildcard.

47

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

– export:aAv result/trial.txt will export all (option A) the (real and integer and
group repetition number) parameters in results/trial.txt without text replace-
ments. If the file exists it will append (option a) to the end of the file and
not overwrite its previous content. And the parameters will be exported in
reversed order (option v).

• exportModelParameters(:[R]IGAfav) (or just exportMP) (optional)N #
(optional)M will export the model parameters specified by the optional model
parameter filter M into the file given by its path and name in the optional argu-
ment N .

• exportModelParameterTable (or just exportMPT) (optional)N # (optional)
M # (optional)P2 # (optional)U2 # . . . (optional)Pn # (optional)Un will export
parameters into the file given by its path and name in the optional argument
N in a tabular form in which each line belongs to a different model, and the
first column contains the name of that model. These models are specified by
the ‘model filter’ M (If M is an empty string then all the models. A model
filter may contain only the combinations of filter commands @m, @mt, @mg.
@ is replaced by internally by @m). The argument pairs Pi # Ui specify the
contents of the i-th column of the table. Pi is a parameter filter which should
correspond to a single parameter in each model (or a statistic, or mathematical
expression of parameter filters, about these we will write below). It is assumed
that it corresponds to a real model parameter, and only if there is no such param-
eter, then it is checked whether there is such a simulation parameter satisfying
the filtering condition. In Ui, we can specify the unit in which the parameter
value is to be exported, and some other options which we will elaborate below.
E.g. exportMPT myplace/text1.txt # abc & !G # Fe*rough # nm # Si*rough # A
will result a file text1.txt in the directory myplace. This file will contain a table
like
Model #Fe*rough (nm) #Si*rough (A)
abc1 5 2
Xabc 6 1
abcDD 0.7 3

As we can see each model name listed in the first column satisfies the filtering
conditon abc & !G, which in this case as it is a model filter is equivalent to @m
abc & !G.

In (Ui after the unit and a colon (:), we may have additional options specifying
whether we want to export simulation (S) or model parameters (M), real (R) or
integer number based parameters (I), or repetition group numbers (G). E.g. in
case of exportMPT myplace/text1.txt # abc & !G # Fe*rough # nm : S # Si*rough
A: M # s1*Cny_n # :I # Fe*thick # nm : SMR the first parameter is requested
as a simulation parameter the second as a model parameter and the third one

48

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

is an integer parameter. The option :SMR in the last parameter means first try
as a real model parameter if there is no such one, then try to find such a real
simulation parameter. This is the default option, therefore # Fe*thick # nm :
SMR and # Fe*thick # nm is equivalent. A parameter cannot be integer and real
number or group repetition number simultaneously, therefore only one of R, I or
G may appear in such an expression, and R is the default setting. Therefore :S
is equivalent to :SR, and similarly :M is equivalent to :MR and :MS (or :SM) is
equivalent to :SMR. For similar reason :R is equivalent to :SMR and :I to :SMI.

As it was mentioned the arguments Pi may not only parameter filters, but
they may be statistics of the corresponding models. E.g. exportMPT myplace/-
text1.txt # abc & !G # Fe*rough # nm # $stat FI # # $stat DOF will write out in
the third and fourth columns the Fitted statistic and the degrees of freedom for
each model. (To have correct values, we have to calculate the statistics choosing
the proper item from the menu Fit/Simulate, before trying to export the values.)
Similarly we can write out the goodness of fit statistic using $stat GOF, and the
corresponding reduced statistics using $stat RFI and/or $stat RGOF.

Mathematical expressions are also possible, having a $math prefix followed
by a possible argument of a math command (see subsection 3.7) resulting a
scalar value. E.g. exportMPT text1.txt # abc & !G # $math sum($(Si*:>thickness)
[nm]) # nm could write out for each model the sums of the thicknesses of the
layers, the name of which contain Si, in nm. Currently, it is a restriction that
in such expressions the arguments of the parameter filter functions $(A) are re-
placed internally for each filtered model, i.e. for each row of the exported file
by $(A & @m M), where M is the name of the model. Therefore, we may not
have expressions depending on parameters of different models.

• plotModelParameterTable (or just plotMPT) (optional)N # (optional) M
(optional)P2 # (optional)U2 # . . . (optional)Pn # (optional)Un is similar to ex-
portModelParameterTable, but here we do not export, but plot the filtered pa-
rameters. The argumentation is very similar, therefore here we describe only
the differences. N is not a file name, but a label which will appear in the title
bar of the plot window. The first parameter will be the independent variable of
the plot, and the others will be the dependent variables. To be able to plot some
of the dependent variables with a common vertical axis we may specify with an
additional option an integer number in Ui. Furthermore we can specify the axis
title of the dependent variables, and the curve label as well. E.g. plotMPT my-
plot # abc & !G # Fe*thick # nm : S::Thickness (nm) # Si*rough # nm: M : 2 :
Roughness : r_Si # Fe*rough # nm: M : 2 :: r_Fe # s1*Cny_n # :I:5:Symmetry
s2*Cnz_n # :I:5 will have two dependent variable axes, one titled Roughness
and one Symmetry, and the independent variable axis will be titled Thickness
(nm), furthermore the two curves belonging to Si*rough and Fe*rough will be

49

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

labelled by r_Si and r_Fe, respectively.

• setValue(:[R]IG) (or just setVal) F # V U sets the value of the parameters
matching the filtering condition F to V in units U . E.g. setVal Fe*thickness &
@fr # 5 nm sets the free real parameters of which name contains Fe*thickness
to 5 nm, setVal Hint & (theta phi) # 65 deg sets the real parameters of which
name contains Hint and (theta or phi) to 65 ◦ setValue graz_beg # 1 mrad sets
the parameter of which name contains graz_beg to 1 mrad, setValue Diff_coeff #
1 nmˆ2sˆ-1 sets the parameter of which name contains Diff_coeff to 1 nm2 · s−1,
setVal:I flag # 3 sets the integer parameter of which name contains flag to 3.

Units are not needed in case of dimensionless parameters, therefore in case of
integer parameters, and if the filtered parameters may have only a single unit (SI
prefix included), i.e. when the unit is fully determined. The filtered parameters
should belong to the same unit group (A unit group is similar to a physical
dimension. Only units of the same group can be converted into each other by
the program). If that is not the case the program will not execute command, and
will return with an error message.

In case of complex units (like nm2 · s−1) it may not be straightforward for
the user what (s)he (nmˆ2sˆ-1) should type in or whether the filtered parameters
belong to the same unit group, therefore there is a command listUnitsOf which
provides help in such cases.

• listUnitsOf(:[R]) F lists for the parameters matching the filtering condition
F all the unit groups and the corresponding units providing their ASCII and
UNICODE names (e.g. meter) and symbols (e.g. m), and whether SI prefix is
or is not allowed to use. On the output the user can see something like the
following:
The unit group Angle (used by the parameters H0T=>src:>Hext::theta, H0T-
=>src:>Hext::phi) may have the following units:

– ASCII/UNICODE: rad ♦ radian

– SI prefix is allowed

– ASCII: deg ♦ degree

– UNICODE: ◦ ♦ degree

– SI prefix is not allowed

It is not too practical, but the user may also use the unit names in the input e.g.
setVal thickness # 5 nanometer (but not nmeter). The user may use the unicode
symbols (and names, some of which nowadays can be accessed quite easily on
keyboards) e.g. setVal theta # 5 ◦, but it may happen, that there are several quite

50

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

similar unicode characters, in which case the user may choose the wrong one
and may not understand what the problem is. In such cases the use of ASCII
symbol or name may be the safe solution.

• setMinimum(:[R]) (or just setMin) F # V U sets the minimum value of the
parameters matching the filtering condition F to V in units U . It is similar to
setValue, a difference is that this cannot be used in case of integer parameters
as the integer minimum and maximum values cannot be changed by the user.

• setMaximum(:[R]) (or just setMax) F # V U sets the maximum value of the
parameters matching the filtering condition F to V in units U . It is similar to
setValue, a difference is that this cannot be used in case of integer parameters
as the integer minimum and maximum values cannot be changed by the user.

• setMagnitude(:[R]) (or just setMag) F # V U sets the magnitude value of the
parameters matching the filtering condition F to V in units U . It is similar to
setValue, a difference is that this cannot be used in case of integer parameters.

• setResolution(:[R]) (or just setRes) F # V U sets the resolution value of the
parameters matching the filtering condition F to V in units U . It is similar to
setValue, a difference is that this cannot be used in case of integer parameters.

• addToValue(:[R]IG) (or just addToVal) F # V U changes the value of the
parameters matching the filtering condition F by adding V in units U . E.g.
addToVal Fe*thickness & @fr # 5 nm adds 5 nm to the free real parameters of
which name contains Fe*thickness, addToVal Hint & (theta phi) # 65 deg adds
65 ◦ to the real parameters of which name contains Hint and (theta or phi)),
addToVal:I flag # 3 adds 3 to the integer parameters of which name contains
flag.

Units are not needed in case of dimensionless parameters, therefore in case of
integer parameters, and if the filtered parameters may have only a single unit (SI
prefix included), i.e. when the unit is fully determined. The filtered parameters
should belong to the same unit group (A unit group is similar to a physical
dimension. Only units of the same group can be converted into each other by
the program). If that is not the case the program will not execute command, and
will return with an error message.

In case of complete units (like nm2 · s−1) it may not be straightforward for
the user what (s)he (nmˆ2sˆ-1) should type in or whether the filtered parameters
belong to the same unit group, therefore there is a command listUnitsOf which
provides help in such cases.

• addToMinimum(:[R]) (or just addToMin) F # V U adds V in units U to
the minimum value of the parameters matching the filtering condition F . It is
similar to addToValue, a difference is that this cannot be used in case of integer

51

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

parameters as the integer minimum and maximum values cannot be changed by
the user.

• addToMaximum(:[R]) (or just addToMax) F # V U adds V in units U to
the maximum value of the parameters matching the filtering condition F . It is
similar to addToValue, a difference is that this cannot be used in case of integer
parameters as the integer minimum and maximum values cannot be changed by
the user.

• addToMagnitude(:[R]) (or just addToMag) F # V U adds V in units U to
the magnitude value of the parameters matching the filtering condition F . It is
similar to addToValue, a difference is that this cannot be used in case of integer
parameters.

• addToResolution(:[R]) (or just addToRes) F # V U adds V in units U to
the resolution value of the parameters matching the filtering condition F . It is
similar to addToValue, a difference is that this cannot be used in case of integer
parameters.

• multiplyValue(:[R]IG) (or just mulVal) F # V changes the value of the pa-
rameters matching the filtering condition F by multiplying by the dimensionless
scalar V . E.g. multiplyValue Fe*thickness & @fr # 5 multiplies the free real pa-
rameters of which name contains Fe*thickness by 5, mulVal:I flag # 3 multiplies
the integer parameters of which name contains flag by 3.

• multiplyMinimum(:[R]) or just mulMin) F # V multiplies the minimum
value of the parameters matching the filtering condition F by V . It is similar to
multiplyValue, a difference is that this cannot be used in case of integer param-
eters as the integer minimum and maximum values cannot be changed by the
user.

• multiplyMaximum(:[R]) (or just mulMax) F # V multiplies the maximum
value of the parameters matching the filtering condition F by V . It is similar to
multiplyValue, a difference is that this cannot be used in case of integer param-
eters as the integer minimum and maximum values cannot be changed by the
user.

• multiplyMagnitude(:[R]) (or just mulMag) F # V multiplies the magnitude
value of the parameters matching the filtering condition F by V . It is simi-
lar to multiplyValue, a difference is that this cannot be used in case of integer
parameters.

• multiplyResolution(:[R]) (or just mulRes) F # V multiplies the resolution
value of the parameters matching the filtering condition F by V . It is simi-
lar to multiplyValue, a difference is that this cannot be used in case of integer
parameters.

52

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• divideValue(:[R]IG) (or just divVal) F # V changes the value of the param-
eters matching the filtering condition F by dividing by the dimensionless scalar
V . E.g. divideValue Fe*thickness & @fr # 5 divides the free real parameters
of which name contains Fe*thickness by 5, divVal:I flag # 3 divides the integer
parameters of which name contains flag by 3.

• divideMinimum(:[R]) or just divMin) F # V divides the minimum value of
the parameters matching the filtering condition F by V . It is similar to divide-
Value, a difference is that this cannot be used in case of integer parameters as
the integer minimum and maximum values cannot be changed by the user.

• divideMaximum(:[R]) (or just divMax) F # V divides the maximum value
of the parameters matching the filtering condition F by V . It is similar to di-
videValue, a difference is that this cannot be used in case of integer parameters
as the integer minimum and maximum values cannot be changed by the user.

• divideMagnitude(:[R]) (or just divMag) F # V divides the magnitude value
of the parameters matching the filtering condition F by V . It is similar to di-
videValue, a difference is that this cannot be used in case of integer parameters.

• divideResolution(:[R]) (or just divRes) F # V divides the resolution value of
the parameters matching the filtering condition F by V . It is similar to divide-
Value, a difference is that this cannot be used in case of integer parameters.

• setToAbsoluteValue(:[R]IG) (or just setAbsVal) F replaces the value of the
parameters matching the filtering condition F by their absolute values.

• swapParameterForMatrixDiagonal(:[R]) (or just swapParMatrDiag) F
swaps the value of the parameters matching the filtering condition F for the
corresponding diagonal transformation matrix elements. This may be useful, if
the ratio of some parameters is known and we would like to fit their common
multiplication factor.

• setMatrixElement(:[R]IG) (or just setME) X # M # S # V sets the element
of the matrix the name of which is filtered by X and belongs to the row of model
parameter filter M and to the column of the simulation/fit parameter S to V .
The filters should have a single match, i.e. it is not possible to set several matrix
elements simultaneously. We allow filters instead of the matrix, row and column
names only to spare users (including ourselves) of unnecessary typing. E.g.
setMatrixElement thick # Fe*thickness # Ag*thick # -1 will work only if only
one model parameter corresponds to Fe*thickness and only one simulation/fit
parameter to Ag*thick, and there is only a single real transformation matrix
the name of which contains the string thick. The V may be a mathematical
expression, for further details see the corresponding part in the text explaining
the setMatrixPartialColumn command on page 54. The only difference is, that

53

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

here only a single element is set, therefore $x will be always 0, thus it has no
use.

• setMatrixPartialColumn(:[R]IG) (or just setMPC) X # M # S # V sets
some of the elements of the matrix the name of which is filtered by X and
belong to the rows of model parameter filter M and to the column of a single
simulation/fit parameter S to V . The filters should match elements of a single
column of a single matrix. We allow filters instead of the matrix, and column
names only to spare users (including ourselves) of unnecessary typing. E.g.
setMatrixPartialColumn thick # Fe*thickness # Ag*thick # -1 will work only if
only one simulation/fit parameter corresponds to Ag*thick, and there is only a
single real transformation matrix the name of which contains the string thick.
The V may be a mathematical expression having a $math prefix followed by a
possible argument of a math command (see subsection 3.7) resulting a scalar
value, the index of the filtered matrix element starting with 0 should be refered
to as $x. E.g. setMPC rough # del0*Ni*rough # Ni*nov # $math 40*exp(-$x)
will set the filtered matrix elements to 40 ∗ (e0, e−1, e−2, . . . , e−(D−1)), where
D is the number of the matrix elements to be set.

• insertSP(:[R]IG) (or just ins) S # X # (Optional) B # (Optional) F # (Op-
tional) M will try to insert a new simulation/fit parameter named S in the trans-
formation matrix the name of which is filtered by X . Optionally we can specify
by filter B the parameter before which the new parameter will be inserted, oth-
erwise it will append after the last parameter belonging to the matrix. And we
can specify optionally a simulation/fit parameter F or model parameter M ac-
cording to which the value and unit of the new parameter will be set. If both are
given, then only F is used.

• renameModel (or just renMod) O # N will try to rename the model named
O to N , here we use names and not filters.

• excludeDataValues (or just excDaV) D # C1I1 . . . CnIn excludes the points
of the data set named D specified the other arguments. Ci can be x or x1 or x2 or
y specifying the data set column to which interval Ii belongs to. The intervals
can be started by ‘(’ (or ‘[’) in case of left-open (left-closed) and ended by ‘)’
(or ‘]’) in case of right-open (right-closed) intervals. Inside we may have two
numbers separated by a colon. If the first (second) number is missing, then
the interval is left(right)-unbounded. The program excludes the points inside
the hyperrectangles stretched by all the possible combination of these intervals.
E.g. excDaV Data1 # x[1.3:52.6] x(73:75] y[:0] y[2.e6:3.12e7] will exclude
the points inside the hyperrectangles: [1.3 : 52.6] × [: 0], [1.3 : 52.6] × [2.e6 :
3.12e7], (73 : 75]× [: 0], (73 : 75]× [2.e6 : 3.12e7].

• includeDataValues (or just incDaV) It is the reverse of excludeDataValues,

54

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

it has the same argumentation.

• help (or just he) T shows help about the commands of which name contains
the text T , and opens the User Manual at the first such command.

• math is used for several operations containing mathematical expressions. For
further details see subsection 3.7

3.7 The ‘math’ command
The math command is one of the commands of the Command-line interface intro-
duced in subsection 3.6, which is described in details here. It is used for several
operations containing mathematical expressions, which may contain operators +,
-, *, / and ˆ (exponentiation); parentheses (,); functions like abs, sgn, floor, ceil,
round, sin, cos, tan, cot, asin, acos, atan, sinh, cosh, tanh, coth, asinh, acosh,
atanh, ln, log, log10, exp, pow, erf, cyl_bessel_j, cyl_neumann, cyl_bessel_i,
cyl_bessel_k, etc.; parameter filters inside ‘functions’ $(); and (real, integer) num-
bers.

The math command can be used for:

• Evaluation of mathematical expressions, e.g.:

– math 3*2+2ˆ3 will result 14.

– math 2*$(Cr*thick)[nm] will return the parameters which are filtered by
the parameter filter Cr*thick in nanometers multiplied by 2;

– math 2 * $pi / $(wavelength)[A] * $(Cr*thick)[A] will return 2π divided
by the parameter wavelength in ångström and multiplied by the parameters
which are filtered by the parameter filter Cr*thick in ångströms.

– math sum($(Cr*thick)) will return the sum of the parameters which are fil-
tered by the parameter filter Cr*thick each in its current unit, for example
if we have two parameters filtered Cr1thickness = 2 nm and Cr2thickness =
5 Å the result will be 7. To have the correct result we have to specify the
unit too, like math sum($(Cr*thick)[nm]) which will result the correctly 2.5
(nanometer).

Currently we have three mathematical constants $pi = π, the Euler number $e
= e ≈ 2.718281828459 and the Euler – Mascheroni constant $EulerMascheroni
= γ ≈ 0.5772156649015. These constants are represented by double precision
floating point numbers, therefore do not be surprised if math sin($pi) will not
return 0, (as some sophisticated mathematical software would do) but something
like 1.22465e-16.

55

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

As we can see in the above mentioned examples the parameter values can be
referred to by the parameter filters written inside the parentheses of the expres-
sion $(), similarly we can refer to the minimum of the parameters by $<(), to
the maximum by $>(), to the magnitude by $|() (| is the vertical bar character)
and to the resolution by $.().

• Definition of mathematical functions, e.g.:

– math sinc(x) := if(lt(abs($x),1e-100), 1, sin($x)/$x) defines the sinus cardi-
nalis sinc(x) = sinx

x
function. (Currently we cannot save a function, the

program will remember the definition, until it is not closed.)

– math aver(xx, y) := ($xx + $y)/2. will define a function with two variables
calculating the arithmetical mean of the two variables.

The functions may have several variables. The names of the variables should be
separated by comma on the left side of the definition (:=), and prefixed by $ on
the right side. As $pi and $e are predefined constants, pi and e may not be used
as variable names.

• Assignment of parameter values, e.g.:

– math $(Cr*roug)[nm] =: $(Cr*thick) [nm]/10 will set the roughnesses of
the layers corresponding to the parameter filter to the tenth part of the corre-
sponding thicknesses.

The parameter assignment in most general case has the form

math $(F)[w][u] =: M,

where F is the filter specifying the parameters the values of which we would
like to set according to the results of the mathemathical expression M on the
right side of the assignment operator (=:); w and u are optional, both specify
unit names, the same way as in the case of the command setValue, therefore
for further details about the unit names please see the help of setValue and lis-
tUnitsOf. u is the name of the unit in which the result of the expression M is
expected. w is the name of the unit to which the parameters filtered by F are to
be set after the assignment. The expression $(F)[u][u] has an equivalent shorter
form $(F)[*u]. $(F)[u] is equivalent to $(F)[][u] and not $(F)[u][]. If there
are no units specified, then the program assumes, that the result of M will be
in the default units of the parameters to be set, and those values should be con-
verted to the current units. We will see, how this works, by examples below. If
we would like to set the minimum, maximum, magnitude, resolution values of
the parameters then instead of $(F) we should use $<(F), $>(F), $|(F), $.(F)
respectively.

56

http://en.wikipedia.org/wiki/Vertical_bar

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

As the unit conversion may appear a bit confuse at first look, let explain it by
some examples. Let have three parameters filtered by Cr*rough
Name . . . Magnitude Unit Resolution Unit
Cr1roughness 5 Å 0 Å
Cr2roughness . . . 6 Å 0 nm
Cr3roughness 0.7 nm 0 Å

and let see what

results with different commands, parameter assignments using this filter:

• The command math $|(Cr*rough) will result (5, 6, 0.7), as if we do not
specify any units it takes the magnitude parameter values in their current units.

• The command math $|(Cr*rough) [nm] will result (0.5, 0.6, 0.7), as the
magnitude values are asked in nanometers.

• The command math $|(Cr*rough) [A] will result (5, 6, 7), as the magnitude
values are asked in ångströms.

• The assignment math $.(Cr*rough) =: $|(Cr*rough) will set the resolution
parameters in order to (5 Å, 0.6 nm, 0.7 Å), as no unit was specified on either
side, the result of the expression on the right side is expected in the internal
unit of the parameters on the left side, which in this case is Å, i.e. (5 Å, 6
Å, 0.7 Å), and as the second parameter unit is in nm, therefore, the second
component is converted to that.

• The assignment math $.(Cr*rough)[nm] =: $|(Cr*rough) will set the reso-
lution parameters in order to (50 Å, 6 nm, 7 Å), as the result of the right side
is expected in nm and there was no unit specified there, therefore the program
assumes that it is (5 nm, 6 nm, 0.7 nm), and this are converted to the current
units of the resolution parameters.

• The assignment math $.(Cr*rough)[A] =: $|(Cr*rough) will set the resolu-
tion parameters in order to (5 Å, 0.6 nm, 0.7 Å), as the result of the right side
is expected in Å and there was no unit specified there.

• The assignment math $.(Cr*rough)[A] =: $|(Cr*rough)[A] will set the res-
olution parameters in order to (5 Å, 0.6 nm, 7 Å), as the result of the right side
is expected in Å, and is calculated in Å.

• The assignment math $.(Cr*rough)[A] =: $|(Cr*rough)[nm] will set the
resolution parameters in order to (0.5 Å, 0.06 nm, 0.7 Å), as the result of the
right side is expected in Å, but is calculated in nm.

• The assignment math $.(Cr*rough)[nm] =: $|(Cr*rough)[nm] will set the
resolution parameters in order to (5 Å, 0.6 nm, 7 Å), as the result of the right
side is expected in nm, and is calculated in nm.

• The assignment math $.(Cr*rough) =: $|(Cr*rough)[nm] will set the reso-
lution parameters in order to (0.5 Å, 0.06 nm, 0.7 Å), as no unit was specified

57

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

on the left side, therefore its expect the results in the internal units which in
this case is Å, and the right side is calculated in nm.

• The assignment math $.(Cr*rough)[*nm] =: $|(Cr*rough)[nm] (which is
equivalent to math $.(Cr*rough)[nm][nm] =: $|(Cr*rough)[nm]) will set the
resolution parameters in order to (0.5 nm, 0.6 nm, 0.7 nm), as here the unit to
which the resolution parameter is to be set was chosen to nm too.

• The assignment math $.(Cr*rough)[A][nm] =: $|(Cr*rough)[nm] will set
the resolution parameters in order to (5 Å, 6 Å, 7 Å), as here the unit to which
the resolution parameter is to be set was chosen to Å.

On the right side of a parameter assignment $$ corresponds to the expression
on the left side. E.g. math $(Cr*roug)[nm] =: sin(2.0*$$) is equivalent with
math $(Cr*roug)[nm] =: sin(2.0*$(Cr*roug)[nm]). As we may see from this
example the command $$ includes the unit specified on the left side as the unit
in which the result of M is expected, at least if it was given there. But we may
also specify the units independently like $$[A], e.g. math $(Cr*roug)[nm] =:
sin(2.0*$$[A]) is equivalent to the command math $(Cr*roug)[nm] =: sin(2.0 *
$(Cr*roug) [A]). We have similar shortcuts for the minimum ($$<), maximum
($$>), magnitude ($$|) and resolution ($$.) values too.

3.7.1 Mathematical functions in math command

• $(F) parameter filter function. A parameter filter F can be given in a math-
ematical expression in the form $(F)[u], where the [u] is optional and it is the
unit in which the values of the filtered parameters are requested, or on the left
side of a parameter assignment the unit in which the result of the expression on
the right side is expected.

In case of parameter assignment, the form $(F)[w][u] is also meaningful,
then [w] (which is optional too) gives the unit to which the parameter should be
set. If the unit is not given, the program will use the parameters in their current
units, i.e. the units which appear in the Parameter Editor. The expression $(
F)[u][u] has an equivalent shorter form $(F)[*u].

• $<(F) parameter filter function, it filters the minimum values. For further
details see the help of $(F) parameter filter function.

• $>(F) parameter filter function, it filters the maximum values. For further
details see the help of $(F) parameter filter function.

• $|(F) parameter filter function, it filters the magnitude values. For further
details see the help of $(F) parameter filter function.

• $.(F) parameter filter function, it filters the resolution values. For further
details see the help of $(F) parameter filter function.

58

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• sum(v) calculates the sum of the components of an array v. E.g.: math
sum($(thick & !Substrate)) will return the sum of the layer thicknesses except
the one of which the parameter name contains the string Substrate.

• seqparsum(v) or sps(v) calculates the sequence of partial sums of the com-
ponents of an array v, i.e. form the array (v1, v2, . . . , vn) we get sps(v) = (v1, v1+

v2, v1 + v2 + v3, . . . ,
n−1∑
i=1

vi,
n∑

i=1

vi). E.g.: math sps($(thick & !Substrate)) will

return the depth of the layer interfaces, the last component of this array will
be the depth, of the substrate (Substrate), i.e. the thickness of the multilayer
system without the substrate. Of course, this is meaningful only if there are no
repetition groups.

• reverse(v) or rev(v) reverses the order of components of an array v.

• dim(v) returns the dimension of v.

• component(v, i) or com(v, i) returns the i-th component of v if i is greater
than -1 and less than the dimension of v, otherwise it returns 0.

• array(a, b, c, . . . , n) or arr(a, b, c, . . . , n), where the arguments a, b, c, . . . , n
should be scalars, returns an array (a, b, c, . . . , n). E.g.: arr(1, 2, 3) will be a 3
dimensional array, arr(1, $(wavelength), 3, sin($pi/2)) a 4 dimensional array (If
$(wavelength) filters several parameter values, we will have a problem, as
array(. . .) expects a scalar and not an array).

• abs(x) returns the absolute value of x. If x is an array (x1, x2, . . . , xn), then
it will return (|x1|, |x2|, . . . , |xn|).
• sgn(x) calculates the signum function sgnx. If x is an array (x1, x2, . . . , xn),
then it will return (sgnx1, sgnx2, . . . , sgnxn).

• floor(x) calculates the floor function ⌊x⌋. If x is an array (x1, x2, . . . , xn),
then it will return ⌊x1⌋, ⌊x2⌋, . . . , ⌊xn⌋). E.g.: floor(2.3) = ⌊2.3⌋ = 2, ⌊2.8⌋ =
2, ⌊3.5⌋ = 3, ⌊3⌋ = 3.

• ceil(x) calculates the ceiling function ⌈x⌉. If x is an array (x1, x2, . . . , xn),
then it will return ⌈x1⌉, ⌈x2⌉, . . . , ⌈xn⌉). E.g.: ceil(2.3) = ⌈2.3⌉ = 3, ⌈2.8⌉ =
3, ⌈3.5⌉ = 4, ⌈3⌉ = 3.

• round(x) rounds x to the nearest integer. If x is an array (x1, x2, . . . , xn),
then it will return (round(x1), round(x2), . . . , round(xn)). E.g.: round(2.3) =
2, round(2.8) = 3, round(3.5) = 4, round(3) = 3.

• lt(x, y) returns 1 if x < y and 0 otherwise. If x is an array (x1, x2, . . . , xn),
then it will return (lt(x1, y), lt(x2, y), . . . , lt(xn, y)). Similarly if x is a scalar and
y an array, then it will return (lt(x, y1), lt(x, y2), . . . , lt(x, yn)). If both are arrays
of the same dimension (lt(x, y) = (lt(x1, y1), lt(x2, y2), . . . , lt(xn, yn)). If they
are different dimensions (and not scalars), then the result is undefined.

59

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• le(x, y) returns 1 if x ⩽ y and 0 otherwise. If x and/or y are arrays, then the
results are determined as for the function lt, but here we use le.

• gt(x, y) returns 1 if x > y and 0 otherwise. If x and/or y are arrays, then the
results are determined as for the function lt, but here we use gt.

• ge(x, y) returns 1 if x ⩾ y and 0 otherwise. If x and/or y are arrays, then the
results are determined as for the function lt, but here we use ge.

• eq(x, y) returns 1 if x = y and 0 otherwise. If x and/or y are arrays, then the
results are determined as for the function lt, but here we use eq.

• neq(x, y) returns 1 if x ̸= y and 0 otherwise. If x and/or y are arrays, then the
results are determined as for the function lt, but here we use neq.

• not(x) returns 1 (0) if x is (not) equal to 0. If x is an array (x1, x2, . . . , xn),
then it will return (not(x1), not(x2), . . . , not(xn)).

• and(x, y) returns x and y, where x and y are boolean (x(y) are false if x is
equal to 0 (y is equal to 0) and true otherwise). If x and/or y are arrays, then the
results are determined as for the function lt, but here we use and.

• or(x, y) returns x or y, where x and y are boolean (x(y) are false if x is equal
to 0 (y is equal to 0) and true otherwise). If x and/or y are arrays, then the results
are determined as for the function lt, but here we use or.

• if(x, y, z, . . .) is a function used to define conditional expressions. It should
have 3 + 2 ∗N arguments, where N = 0, 1, 2, . . . E.g.:

– if(x, y, z) is y if the expression x is not 0, and z otherwise;

– if(x, y, z, w, u) is y if the expression x is not 0, and otherwise w if z is not
0, if z is 0 than u;

– if(a1, a2, . . . , an) corresponds to C(++) code if(a1){r = a2;}else if(a3){r =
a4;}. . . else if(an−2){r = an−1;}else {r = an;}, where r represents the result
of the function.

For example, the sinus cardinalis sinc(x) = sinx
x

function can be defined with
the command math sinc(x) := if(lt(abs($x),1e-100), 1, sin($x)/$x).

• pow(x, y) calculates the power function xy. If x is an array (x1, x2, . . . , xn),
then it will return (xy

1, x
y
2, . . . , x

y
n). Similarly if x is a scalar and y an array, then

it will return (xy1 , xy2 , . . . , xyn). And if both are arrays of the same dimension
the result will be (xy1

1 , xy2
2 , . . . , xyn

n). If they are different dimensions (and not
scalars), then the result is undefined.

• exp(x) calculates the natural exponential function of x. If x is an array of size
n, then it will return (exp(x1), exp(x2), . . . , exp(xn)).

60

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• ln(x) or log(x) calculates the natural logarithm of x. If x is an array of size
n, then it will return (ln(x1), ln(x2), . . . , ln(xn)).

(log10(x) is the logarithm of x to base 10.)

• log10(x) calculates the logarithm of x to base 10. If x is an array of size n,
then it will return (log10(x1), log10(x2), . . . , log10(xn)).

(log(x) and ln(x) are the used notations for natural logarithm of x.)

• sin(x) calculates the sine of x in radian. If x is an array of size n, then it will
calculate (sinx1, sinx2, . . . , sinxn).

• cos(x) calculates the cosine of x in radian. If x is an array of size n, then it
will calculate (cosx1, cosx2, . . . , cosxn).

• tan(x) or tg(x) calculates the tangent of x in radian. If x is an array of size
n, then it will calculate (tanx1, tanx2, . . . , tanxn).

• cot(x) or ctg(x) calculates the cotangent of x in radian. If x is an array of
size n, then it will calculate (cotx1, cotx2, . . . , cotxn).

• asin(x) or arcsin(x) calculates the arcus sine of x the result is in radian. If x
is an array of size n, then it will calculate (asinx1, asinx2, . . . , asinxn).

• acos(x) or arccos(x) calculates the arcus cosine of x the result is in radian. If
x is an array of size n, then it will calculate (acosx1, acosx2, . . . , acosxn).

• atan(x) or arctg(x) calculates the arcus tangent of x the result is in radian. If
x is an array of size n, then it will calculate (atanx1, atanx2, . . . , atanxn).

• sinh(x) or sh(x) calculates the hyperbolic sine of x. If x is an array of size n,
then it will calculate (sinhx1, sinhx2, . . . , sinhxn).

• cosh(x) or ch(x) calculates the hyperbolic cosine of x. If x is an array of size
n, then it will calculate (coshx1, coshx2, . . . , coshxn).

• tanh(x) or th(x) calculates the hyperbolic tangent of x. If x is an array of
size n, then it will calculate (tanhx1, tanhx2, . . . , tanhxn).

• coth(x) or cth(x) calculates the hyperbolic cotangent of x. If x is an array of
size n, then it will calculate (cothx1, cothx2, . . . , cothxn).

• asinh(x) or arsh(x) calculates the area hyperbolic sine of x. If x is an array
of size n, then it will calculate (asinhx1, asinhx2, . . . , asinhxn).

• acosh(x) or arch(x) calculates the area hyperbolic cosine of x. If x is an
array of size n, then it will calculate (acoshx1, acoshx2, . . . , acoshxn).

• atanh(x) or arth(x) calculates the area hyperbolic tangent of x. If x is an
array of size n, then it will calculate (atanhx1, atanhx2, . . . , atanhxn).

61

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• erf(x) calculates the error function of x. If x is an array of size n, then it will
calculate (erf(x1), erf(x2), . . . , erf(xn)).

• invErf(x) calculates the inverse of the error function. If x is an array of size
n, then it will calculate (invErf(x1), invErf(x2), . . . , invErf(xn)).

• Ei(x) calculates the exponential integral Ei(x) = −E1(−x) =
∞∫
−x

e−t

t
dt of x.

If x is an array of size n, then it will calculate (Ei(x1),Ei(x2), . . . ,Ei(xn)).

• expInt(m,x) calculates the exponential integral Em(x) =
∞∫
1

e−xt

tm
dt of x. If x

is an array of size n, then it will calculate (Em(x1),Em(x2), . . . ,Em(xn)). There
exist extensions for real m and negative x values, but the implementation used
by the program assumes m = 0, 1, 2, . . . and x ⩾ 0. If m is not an integer, it
will calculate with floor(m).

• gamma(x) calculates the gamma function Γ(x). It returns nan for negative
integer values, and 0. It returns 0 for values greater than 171 (because of the C,
C++ implementation. . .).
If x is an array of size n, then Γ(x) = (Γ(x1),Γ(x2), . . . ,Γ(xn)).

• lgamma(x) calculates the natural logarithm of the gamma function ln Γ(x).
It is defined only for positive (x > 0) values. If x is an array of size n, then
ln Γ(x) = (ln Γ(x1), ln Γ(x2), . . . , ln Γ(xn)).

• beta(x, y) calculates the modified beta function B(x, y) = Γ(x)Γ(y)
Γ(x+y)

. If x is an
array of size n, then B(x, y) = (B(x1, y), B(x2, y), . . . , B(xn, y)).

• cyl_bessel_i(ν, x) calculates the modified Bessel function of the first kind
Iν(x). If x is an array of size n, then Iν(x) = (Iν(x1), Iν(x2), . . . , Iν(xn)).

• cyl_bessel_k(ν, x) calculates the modified Bessel function of the second kind
Kν(x). If x is an array of size n, then Kν(x) = (Kν(x1),Kν(x2), . . . ,Kν(xn)).

• cyl_bessel_j(ν, x) calculates the Bessel function of the first kind Jν(x). If x is
an array of size n, then Jν(x) = (Jν(x1), Jν(x2), . . . , Jν(xn)).

• cyl_neumann(ν, x) calculates the Bessel function of the second kind Nν(x).
If x is an array of size n, then Nν(x) = (Nν(x1),Nν(x2), . . . ,Nν(xn)).

3.8 Report generator
On clicking Results Create Report appears a window with a report of the current
project containing the model structure and the model parameter values. The report
can be saved in an html file. (This feature is still in a very early development
stage.)

62

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 10: The dialog used to clone a model.

3.9 Cloning
It happens frequently that the user wants to fit the same type of experiment in a
bit different environment, or a bit different sample, etc. It would be inconvenient
to build up almost the same model several times and then to correlate almost all
the parameters. Therefore in FitSuite we can clone the models. This can be done
by just right clicking on the model name in the window Problems and selecting

Clone from the pop-up menu. Thereafter a dialog arises in which we can
choose the number of clones and the parameters and/or matrices which are (not
to) to be correlated. After this we will have copies of the chosen model and of the
data belonging to it. These data may be replaced by right clicking on them in the
window Problems and choosing Replace Data from arising pop-up menu.

In the clone dialog we may specify the parameters, which will be the same
in the clone models and the cloned model, the number of clones. We may ad-
ditionally add ‘post-cloning’ commands. In these commands, the labels of the
dependent variable columns specified in the data file format dialog (see page 33),
appearing if we checked Replace data with measurement series and clicked OK
in the clone dialog, can be used as parameters in the comand list. The string of the

63

http://en.wikipedia.org/wiki/Pop-up_menu
http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

label is referred to as %s, if the label is a number, then we may refer to its value
as %v. Similarly, the name of the new clone model is represented by %c, and
the name of the new data set as %d. Let see an example for such a post-cloning
command list (The symbol ↪→ notes the line breaks forced by LATEX to fit the lines
in the page. This symbol and the line numbers on the left are not present in the
command list.):

1 //Comments are started with // as in C++ and end at the end of the line.
2 renMod %c # NoEff%s; //rename the clone model(s) from %c to NoEff%s In the following

↪→ lines %c will be already NoEff%s
3 corr:R %c & (Inter*thickn Fe57*thickn) # %c=>Inter:>thickness; //correlate the

↪→ parameters %c & (Inter*thickn Fe57*thickn), the new correlated parameter name will be
↪→ %c=>Inter:>thickness

4 setME thickn # %c*Fe57*thickn # %c*Inter*thickn # −1; //set the element row %c*
↪→ Fe57*thickn , column %c*Inter*thickn of the transformation matrix thickn (i.e. thickness) to
↪→ −1.

5 ins %sTotalThickness # thick #%c*Inter*thick # 37_05*Inter*thick; //Insert a new
↪→ fit/simulation parameter with name %sTotalThickness in the transformation matrix thickn (
↪→ thickness) before %c*Inter*thick and initialize it according to the fit/simulation parameter
↪→ 37_05*Inter*thick

6 math $<(%sTotalThickness [A]) =: 0; //Set the minimum value to 0 ångström
7 math $>(%sTotalThickness [A]) =: (%v +1); //Set the maximum value to (%v+1) ångstr

↪→ öm
8 setVal %sTotalThickness # %v A; //Set the value to %v ångström
9 setME thickn # %c*Fe57*thickn # %sTotalThickness # 1; //set the element row %c*

↪→ Fe57*thickn , column %sTotalThickness of the transformation matrix thickn (i.e. thickness)
↪→ to 1.

10

11 //set the values of some other uncorrelated parameters.
12 math $<(%c*Inter*thickn)=: 10; math $>(%c*Inter*thickn)=: %v; //several

↪→ commands may appear in the same line, if they are closed by semicolon.
13 math $|(%c*Inter*thickn)=: 1; math $.(%c*Inter*thickn)=: 1e−2;
14 math $(%c*Inter*thickn)=: %v−1;
15

16 math $<(%c*background)=: 0; math $>(%c*background)=: 1e−3;
17 math $|(%c*background)=: 1e−4; math $.(%c*background)=: 1e−6;
18 math $<(%c*count)=: 0.1; math $>(%c*count)=: 1.3;
19 math $|(%c*count)=: 1; math $.(%c*count)=: 1e−2;
20 math $<(%c*time_shift)=: −4; math $>(%c*time_shift)=: −2;
21 math $|(%c*time_shift)=: 1; math $.(%c*time_shift)=: 1e−2;
22 math $<(%c*L_width)=: 0; math $>(%c*L_width)=: 10; math $.(%c*L_width)

64

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

↪→ =: 0.1;
23

24 excDaV %d # y [:0]; //Exclude the data points with negative dependent variable
25 excDaV %d # x[:14.2]; //Exclude the data points with independent variable value less, than

↪→ 14.2.
26

27 fix; //Fix all the parameters
28 free %c*background %c*counts %c*time_shift %c*Inter*thickness; //Free some of

↪→ the parameters belonging to the new clone model.

3.10 Merging projects
If we work with a lot of data sets simultaneously, it occurs frequently that we start
the fitting one data set, then another and save these in different project files, as
keeping all the data in a single project file in the early stage of the fitting process,
when it is still not clear which parameters have significant effect, are worth to be
fitted, are to be correlated, etc. But later we may want to see the fits together, to
fit the parameters simultaneously, to be able to observe the trends. In such a case,
we can merge projects clicking (File Merge with Project), but only if the merged
projects do not have models and simulation/fit parameters with the same name,
and do not contain models of different model type repositories.

3.11 Model groups
The user may group models from version 1.0.3. The model groups are used just
to select a few models from the available ones in the current project, in order
to simulate, fit, plot only them. To create model groups just select them in the
window Problems with shift + cursor , right click with mouse and in the arising
pop-up menu select Group Model(s) . In the dialog showing up thereafter the
user may choose the models to be grouped and the name of the group according
to which we can use them later on see modelgroup demo.

3.12 Simulation, Fit
The simulation can be started by clicking Fit/Simulation Simulate . The program
checks, whether there was a former simulation, and the parameter values were
changed or not, and calculates only when it is necessary. It may happen that
this program decision was not appropriate. In such cases you may force simula-
tion by clicking Fit/Simulation Force Simulation . It is possible to simulate only

65

http://en.wikipedia.org/wiki/Pop-up_menu
http://www.fs.kfki.hu/Demos/Modelgroups.htm

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

a single model (fitting problem), or models of a model group (see subsubsec-
tion 3.11) choosing the proper menu items of Fit/Simulation Simulate Only . . . and
Fit/Simulation Force Simulation of

The independent variable of the simulation/fit may be specified by setting
properly in the Problems window on the left side in the column with name grid
type, if there is a possibility. Just click on the proper cell, and change it, if it is
possible. (Some models have only one grid type.)

The iteration (fitting) can be started by clicking Fit/Simulation Fit . It is pos-
sible to fit only a single model (fitting problem), or models of a model group
choosing the proper menu items of Fit/Simulation Fit Only

Choosing the menu item Fit/Simulation Select Fitting Method you can select
the fitting method and set their parameters. At present we have the following
methods:

3.12.1 Powell‘s method

Powell‘s method which is a slightly modified version of the code available in Nu-
merical Recipes in C available at http://www.nrbook.com section 10.5. The method
has the following parameters, options:

• MaxIter: is the maximum number of allowed iteration steps. If a minimum
was not found in so many steps, the optimization is finished. (The Nelder –
Mead, Polak – Ribiere, Fletcher – Reeves, Broyden – Fletcher – Goldfarb –
Shanno, and Levenberg – Marquardt methods use this as well.)

• tolerance: is the tolerance τtol with which the minima of the function f is
determined. The result fn of the nth iteration step is accepted if:
τtol (|fn−1|+ |fn|) ⩾ |fn−1 − fn|.
(The Nelder – Mead, Polak – Ribiere, Fletcher – Reeves, Broyden – Fletcher –
Goldfarb – Shanno, and Levenberg – Marquardt methods use this as well. In
the last two it has a different meaning, role.)

Powell‘s method uses line minimization methods, as Golden-section search (see
in Numerical Recipes in C available at http://www.nrbook.com section 10.1 and/or
on Wikipedia8), Brent‘s method, Brent‘s method using derivatives(see in Numeri-
cal Recipes in C section 10.2 and 10.3, respectively). The user may be choose one
of them. They have the following parameters, options:

• MaxIterLine: is the maximum number of iteration steps in the 1 dimen-
sional optimization method, if a minimum was not found in so many steps,

8http://en.wikipedia.org/wiki/Golden section search

66

http://www.nrbook.com
http://www.nrbook.com
http://en.wikipedia.org/wiki/Golden section search

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

the current line optimization is finished. (The main method may continue
its own iteration. The fitting is not finished just because MaxIterLine was
reached.)

• tolLine: is the fractional tolerance tLine with which the minimum along the
given direction should be found by Brent‘s method or Brent‘s method us-
ing derivatives. Optimization along a direction is finished if 2tLine|x| ⩾
|x0 − x|, where x0 is the true local minimum and x is the calculated one.

• GLimit: In the optimization methods Powell, Fletcher – Reeves and Po-
lak – Ribiere the minimum of the function f (which in case of fitting of
experimental data sets is the χ2) is searched along directions specified by
them. The first step to find a minimum along a direction is to find three
points a, b and c where b is between a and c furthermore f(a) and f(c)
are both greater than f(b). The three points are searched by starting from
an initial triplet moving similarly to an inchworm, i.e. updating (a, b, c)
by (a = b, b = c, c = u), where u is the minima of the parabolic fit
on (a, f(a); (b, f(b)); (c, f(c)). This type of move is accepted only
if the obtained u is between c and ulim = b + GLimit(c − b), otherwise the
(a = b, b = c, c = ulim) move is made. This is quite oversimplified just
to explain the use of GLimit. For further details see the routine mnbrak in
‘Numerical Recipes in C (Fortran)’.

There is one additional option with which may choose the order of line minimiza-
tion directions randomly in each iteration step of the Powell’s, method. This may
be useful sometimes.

3.12.2 Nelder – Mead method

Nelder – Mead method (Numerical Recipes in C based, section 10.4). A good
description, with animation (and with a bit different terminology) is available on
wikipedia9. Nelder – Mead method is sensitive to scaling of the parameters. It has
the following parameters and options:

• MaxIter: as in Powell‘s method.

• tolerance: as in Powell‘s method.

• Reflection factor: see Numerical Recipes in C. Its default value is 1.

• Stretch factor: see Numerical Recipes in C. (On wikipedia it is called the
expansion coefficient) Its default value is 2.

9http://en.wikipedia.org/wiki/Nelder-Mead method

67

http://en.wikipedia.org/wiki/Nelder-Mead method

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• Contraction factor: see Numerical Recipes in C. (On wikipedia you find a
contraction and shrink coefficient as well, in FitSuite, we use the same value
for both transformation, therefore we have only this contraction factor.) Its
default value is 1

2
.

• There are parameters which determine, how the initial simplex is generated:

– It is possible to have a simplex which contains the initial parameter
vector (consisted only of the free components): as one of its vertices,
or as its center. In the former case we have the possibility to chose that
vertex randomly, or by giving an ordinal number. These make possi-
ble to try to restart fitting, by a different simplex in order try to get
out of local minimums, without changing the free parameters. Some-
times it is worth to start a fit again, even if it reached convergence,
as the new initial simples generally will be quite different from the
one with which the convergence was reached, therefore this way fur-
ther improvement may be possible. We should stop this only if no
change was experienced several times, as then we probably are in the
‘attraction basin’ of at least a local minimum. If we chose the initial
parameter vector to be the centre of the initial simplex, than it may
happen, that the method stops with an objective function value greater
than the initial one. As that is always the least function value belong-
ing to the vertices of the final simplex, while the starting value belongs
to the centre of the initial simplex. This may be a bit disturbing some-
times, but on the other hand it may help to extricate ourselves from
some nasty local minima.

– Initial simplex size: is a parameter determining the length of the vec-
tors pointing to the vertices of the simplex from the center of the sim-
plex. The initial simplex is always a regular one, therefore in the case
of this method is also worth to rescale the free parameters to the same
order of magnitude (see subsubsection 2.6.3). Fitting again with dif-
ferent initial simplex sizes may also help to explore the nature of the
minimum we reached, the extent of its ‘basin of attraction’.

3.12.3 Polak – Ribiere and Fletcher – Reeves

Polak – Ribiere and Fletcher – Reeves methods (Numerical Recipes in C based,
section 10.6 and on wikipedia10). They have the same (a bit less) options and
parameters as Powell‘s method, but they use derivatives.

10http://en.wikipedia.org/wiki/Nonlinear conjugate gradient method

68

http://en.wikipedia.org/wiki/Nonlinear conjugate gradient method

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

3.12.4 Broyden – Fletcher – Goldfarb – Shanno

Broyden – Fletcher – Goldfarb – Shanno (on wikipedia11) variant of the Davidson –
Fletcher – Powell method (Numerical Recipes in C based, section 10.7, may see
also on wikipedia12). The method uses derivatives and has the following parame-
ters, options:

• MaxIter: as in Powell‘s method.

• tolerance: It is the same, as in Powell‘s method, but here it is used to check
whether the gradient is already small (near to 0) enough, i.e. the following
condition τtol max(|fn| , 1) ⩾ max

l

∣∣∣ ∂f∂pl
·max(|pl| , 1)

∣∣∣ is satisfied, where τtol

is the tolerance, fn is the result of the nth iteration step and p is the parameter
vector.

• MaxStep: is the scaled maximum step length allowed in line searches in
BFGS. The length of a step along the direction of ∇f(p) will be no greater,
than Smax · max(|pfree| , dimpfree), where Smax denotes MaxStep, pfree the
vector of free parameters. Its default value is 100. For further details see
stpmx variable in the corresponding Numerical Recipes in C function (For-
tran subroutine).

• Alpha: ensures sufficient decrease in function value in line searches in
BFGS, i.e. the function value f(pnew) at the new point fulfills the condi-
tion f(pnew) ⩽ f(pprevious) + α(pnew − pprevious) ·∇f(pprevious), where α is
Alpha. Its default value is 10−4. For further details see ALF variable in the
corresponding Numerical Recipes in C function (Fortran subroutine).

• TolxLnsrch: gives convergence criterion on the location of the minimum in
line searches in BFGS. Convergence is reached in line search, if the step
length

∣∣pnew − pprevious
∣∣ satisfies the condition

∣∣pnew − pprevious
∣∣ < τLnsrch min

i

∣∣∇f(pprevious)
∣∣max

(∣∣∣pprevious
i

∣∣∣ , 1)
|∂pif(pprevious)|

,

where τLnsrch denotes TolxLnsrch.

Its default value is 10−7. For further details see TOLX variable in the cor-
responding Numerical Recipes in C (lnsrch) function (Fortran subroutine).

11http://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno algorithm
12http://en.wikipedia.org/wiki/Davidon-Fletcher-Powell formula

69

http://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno algorithm
http://en.wikipedia.org/wiki/Davidon-Fletcher-Powell formula

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

3.12.5 Levenberg – Marquardt

Levenberg – Marquardt method (Numerical Recipes in C based, section 15.5 may
see also on wikipedia13).

• MaxIter: as in Powell‘s method.

• tolerance: It is the same, as in Powell‘s method, but here it is used to check
whether the relative change in the objective function is great enough. The
iteration is stopped, when τtol max(1, fn) ⩾ |fn − fn−1|, where τtol is the
tolerance, fn is the result of the nth iteration step. Because of max(1, fn) it
is clear, that for objective functions much less, than 1 it will not work
properly. This was written thus, as the χ2 is rarely less, than 1, if we have
known properly the uncertainties . . .

• λ0: It is the initial value of the damping factor λ in Levenberg-Marquardt
method, which in case λ = 0 corresponds to inverse Hessian method, and
in case of λ → ∞ to steepest descent method.

• q: It gives the factor by which the damping factor λ is multiplied or divided
in Levenberg-Marquardt method, when we increase or decrease its value.

• λmin and λmax: give the allowed minima and maxima of the damping factor
λ of the Levenberg-Marquardt method.

3.12.6 Levenberg – Marquardt method (LMDER) from the MINPACK

Levenberg – Marquardt method (LMDER) from the MINPACK [16, 17] package
available at http://www.netlib.org/minpack/. This was translated from Fortran into
C++ and modified a bit by us, so it may work a bit differently, than the original
one.

• MaxFev: It is the allowed maximum number of function evaluation.

• ftol: It is a nonnegative parameter. Termination occurs when both the actual
and predicted relative reductions in the sum of squares are at most ftol.
Therefore, ftol measures the relative error desired in the sum of squares.

• gtol: It is a nonnegative parameter. Termination occurs when the cosine
of the angle between the ‘fitted vector statistic’ κ and any column of the
jacobian (∇pκi) is at most gtol in absolute value. Therefore, gtol measures
the orthogonality desired between the function vector and the columns of
the jacobian.

13http://en.wikipedia.org/wiki/Levenberg-Marquardt algorithm

70

http://en.wikipedia.org/wiki/Levenberg-Marquardt algorithm
http://www.netlib.org/minpack/

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• xtol: It is a nonnegative parameter. Termination occurs when the relative
error between two consecutive iterates is at most xtol. Therefore, xtol mea-
sures the relative error desired in the approximate solution.

• factor: It is a positive parameter used in determining the initial step bound.
This bound is set to the product of factor and the euclidean norm of Dp,
where D is a diagonal matrix containing internally determined multiplica-
tive scale factors for the free fitting parameters p, if nonzero, or else to
factor itself. In most cases factor should lie in the interval (0.1, 100). 100
is a generally recommended value.

3.12.7 Genetic algorithms

Genetic algorithms are used nowadays for a lot of things, in a large area of science,
engineering, mathematics, etc. According to wikipedia14: ‘In a genetic algorithm,
a population of candidate solutions (called individuals, creatures, or phenotypes)
to an optimization problem is evolved toward better solutions. [. . .] The evolu-
tion usually starts from a population of randomly generated individuals, and is
an iterative process, with the population in each iteration called a generation.
In each generation, the fitness of every individual in the population is evaluated;
the fitness is usually the value of the objective function in the optimization prob-
lem being solved. The more fit individuals are stochastically selected from the
current population, and each individual’s genome is modified (recombined and
possibly randomly mutated) to form a new generation. The new generation of
candidate solutions is then used in the next iteration of the algorithm. Commonly,
the algorithm terminates when either a maximum number of generations has been
produced, or a satisfactory fitness level has been reached for the population.’

In FitSuite we use an example algorithm available in the appendix of [18]
called ‘Continous genetic algorithm’, which we modified, generalized based on
the ideas available in the literature of genetic algorithms, especially in [18–20].
Here we try to enumerate, explain the ideas, options available in our algorithm.

The individuals are points in the subspace of the fitted free parameters, se-
lected initially randomly in the region specified by minimum and maximum val-
ues (bounds) of the corresponding parameters. It is important to give a not too
large interval for the parameters, as that can affect the convergence badly. Usually
it is not hard to provide such information, as we know what values are already
unrealistic for the given problem, we should set the bounds accordingly. The ge-
netic algorithms should not be used to get the ‘exact’ optimum, but to get close
enough to it and thereafter we can increase the precision using other methods.
This method does not use derivatives.

14http://en.wikipedia.org/wiki/Genetic algorithm

71

http://en.wikipedia.org/wiki/Genetic algorithm

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• Maximum number of generations: It is obvious, that the algorithm should
stop even if the convergence is not reached, after a reasonable number of
generation was tried, if we do not want to end up occasionally in an endless
cycle. This option gives that number.

• Population size: It is the number of individuals (points in the parameter
space), which are evaluated in each generation. If we set it to a too large
value, than we calculate in a lot of points, and this slows the convergence.
If we set it to a too small value, than we calculate in a few points and we
cannot check a large enough region of the parameter space, and this can
slow the convergence as well.

• Size of elite list: After the fitness is evaluated for all the individuals of a
generation, we select the new generation replacing the current individuals.
It is clear, that it is not good if we do not keep some of the bests for the next
generation, as we may throw out a very good individual. Size of elite list
gives the number of the best individuals we keep from the current genera-
tion. This should be at least 1.

• Convergence generation number: If the best fitness value did not change
too much through the last N generations (i.e.

∣∣f b
i+N − f b

i

∣∣ < "Tolerance" ·∣∣f b
i+N

∣∣, where f b
i is the best value in the i-th generation), then it is reasonable

to stop, as at least a local minimum is reached. This option specifies this N .

• Tolerance: It gives the tolerance according to which we decide whether
convergence was reached. For further detalis see ‘Convergence generation
number’ above.

• Mutation rate: It is a number between 0 and 1. It specifies the number of
parameters of the individuals which are replaced, changed in each new gen-
eration randomly, after selection, i.e. "Number of mutated individual param-
eters" = "Mutation rate" ·("Population size" - "Size of elite list")·"Number
of free parameters".

• Selection ratio: It is a number between 0 and 1. The number of the pop-
ulation members surviving from previous generations is "Selection ratio"
· "Population size". Therefore "Population size" ·(1-"Selection ratio") is
replaced by the selection mechanism.

With different selection mechanisms we select the members of the population
which will survive the current generation, and which will be the parents of the
new members in the next generation.

72

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Let note with pi (i = 0, . . . , k), the probability, that the i-th individual is
selected from k + 1 individuals. (It is k + 1, as we start the indexing by 0, and do
not want to finish it with k − 1.) In practice the selection is done in the following
way. Let define the quantity

o0 = 0, oi+1 =
i∑

j=0

pj, (41)

and as it follows from the definitions

pi = oi+1 − oi, and ok+1 = 1, (42)

therefore a random number v ∈ [0, 1] will fall in the interval (oi, oi+1] with prob-
ability pi. Thus we select the i-th individual, if oi < v ⩽ oi+1.

The following selection methods differ in the method by which pi is defined.

Linear rank based selection Using linear rank based selection mechanism the
probability of selection of the i-th individual is

pi = q − ir, (i = 0, . . . , k), (43)

where the 0-th is of the highest rank, and the k-th is of the lowest rank [page 60

of ref. 19] and
k∑

i=0

pi = 1. This equation can be transformed into the form

pi(α) =
1

k + 1

(
α + 1− 2α

k
i

)
= pk−i(−α), (44)

where −1 ⩽ α ⩽ 1 is the selection pressure. If α = 0, then there is no selection
pressure, all the individuals are selected with the same probability pi =

1
k+1

. If
α = 1 the selection pressure is maximal, as p0 = 2

k+1
, p1 = 2(k−1)

k(k+1)
, . . . , pk−1 =

2
k(k+1)

, pk = 0. If α = −1 the contraselection pressure is maximal, as p0 = 0, p1 =
2

k(k+1)
, . . . , pk−1 = 2(k−1)

k(k+1)
, pk = 2

k+1
. The option of FitSuite Selection pressure

factor is this α, with which we can influence the speed of the convergence, how
fast we throw out the less fit individuals.

Geometric progression rank based selection Using geometric progression rank
based selection mechanism the probability of selection of the i-th individual is

pi = cq(1− q)i, (i = 0, . . . , k), (45)

73

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

where the 0-th is of the highest rank, and the k-th is of the lowest rank [page 60

of ref. 19] and
k∑

i=0

pi = 1. Therefore

pi =
q(1− q)i

1− (1− q)k+1
, (i = 0, . . . , k). (46)

It can be seen, that in cases:
• q = 0 ⇛ lim

q→0
pi =

1
k+1

= const. ⇛ there is no selection pressure.

• q = 1 ⇛ p0 = 1, pi>0 = 0 ⇛ The selection pressure is maximal.
• q = −∞ ⇛ pi<k = 0, pk = 1 ⇛ The contraselection pressure is

maximal.
In FitSuite we have q as the option Geometric progression factor, with which we
can influence the speed of the convergence, how fast we throw out the less fit
individuals. In the program we may change it between 0 and 1.

Tournament based selection m+1 individuals are selected and from these we
select a single one. The ‘best’ (most fittest) one is selected with probability p and
the less fit individuals are selected with less and less probability, as their fitness is
decreasing:

p0 = p, pi = c(1− p)i, (i = 1, . . . ,m). (47)

As

1 =
m∑
i=0

pi = p+ c

(
1− (1− p)m+1

1− (1− p)
− 1

)
= p+ c

(
1− p− (1− p)m+1

p

)
,

(48)

therefore

c =
p

1− (1− p)m
, (49)

and thus

p0 = p, pi = p
(1− p)i

1− (1− p)m
, (i = 1, . . . ,m). (50)

E.g.: m = 1, we have a binary tournament p0 = p, p1 = 1 − p. In FitSuite
m = ⌊ "Tournament ratio" · "Selection ratio" · "Population size"⌋ except, when
the m value would be less than 1, or we selected a binary tournament, then we
have a binary tournament. (⌊. . . ⌋ denotes the floor function.) p is the Tournament
selection factor in FitSuite. Practically p ⩾ 1

m+1
, therefore p ⩾ 1

2
is generally a

good default value.

74

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Modified roulette selections In the original roulette selection, the probability
of selection of the i-th individual is

pi =
fi∑
fi
, (51)

where fi is the merit of the i-th individual. The problem with this is, that it was de-
vised for maximalization problems and no minimalization, which we need. There-
fore we use another method described below.

As a version of roulette selection it is a custom to use the following [20]. Let
be

ϱi =
fi − fmin

fmax − fmin
, (52)

where fmax and fmin are maximal and minimal value of the objective function in
the given population (and not minimum and maximum of the function f(.)!!!).

Using some of the dinamically scaled (as fmax, fmin and thus ϱ varies from
population to population) merit functions (F (0) ⩽ 1, 0 ⩽ F (0 ⩽ x ⩽ 1) ⩽
1, F (x) ⩾

x⩽y
F (y)):

• In case of exponential roulette selection F (ϱ) = exp(−Sϱ), where S
is referred to as the Exponential roulette scaling factor in FitSuite.

• F (ϱ) = 1
2
[1− tanh (2π(2ϱ− 1))] in case of hyperbolic tangent roulette

selection. Instead of this we built in the program the more general
function F (ϱ) = 1

2
[1− tanh (a(ϱ− b))], where a is referred to as

the Hyperbolic tangent roulette scaling factor and b as the Hyperbolic
tangent roulette position in FitSuite.

• F (ϱ) = 1−ϱn in case of power roulette selection, where n is referred
to as the Power roulette exponent in FitSuite.

The selection is done in the following way. We pick randomly an individual with
index i from the population, we calculate the corresponding F (ϱi,) and we select
this individual with probability F (ϱi), i.e. if v < F (ϱi), where v ∈ [0, 1] is a
generated random number. If we have not selected this individual, then we pick
randomly an individual, and we check it the same way, and we repeat this until
we do not find a proper one.

As F (ϱ) is decreasing monotonically, therefore the greater ϱi is, the smaller is
the probability that we select it.

The difference between the different functions F (ϱ) arises, in the measure
by which they differentiate the ‘good’ and ‘bad’ individuals. For example, the
exponential function changes fast around 0, therefore it differentiates strongly
the good ones, but weakly the bad ones. In case of the power function n > 1
we have a reverse behaviour, it heightens the differences between the bad ones,

75

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

and suppresses between the good ones. The tangent hyperbolic heightens the
differences between the average individuals, and it blurrs the differences between
the exceptionals and good ones, and between the bad ones and the very bad ones
to a certain degree.

Sharing If we have a lot of local optimum, it is not always the best strategy
to have a too fast convergence, as we may stuck into a local minimum, as all
the individuals get into its basin of attraction, because of the appearance of an
excellent, but still not the best individual of an early population. One method to
avoid this is sharing [pages 168-169 of ref. 19] which permits formation of stable
subpopulations (like species in biology), in this way we may investigate many
valleys (local minimums, biological niches) in parallel. It is clear, that decreasing
the fitness of an individual, if it has a lot of very close neighbors (i.e. they share a
lot of common genes, and because of this they use the same finite resources) will
act against the above mentioned tendency. A sharing function s(d) determines
the degradation of fitness of an individual, due to a neighbor in distance d. It is a
monotonical function, which is defined in such a way that s(∞) = 0 ⩽ s(d) ⩽
1 = s(0). One used definition is

s(d) =

{
1−

(
d
σs

)γ

if d < σs

0 otherwise
, (53)

where σs is the Sharing scaling factor and γ is the Sharing power of FitSuite.
We should decrease the fitness f(x) of an individual at a position x by a factor of
m(x) =

∑
{y}

s(d(x, y)), where {y} represents the set of all the individuals in the

population, therefore the modified fitness would be f ′(x) = f(x)
m(x)

(as in FitSuite
we minimize and not maximize we multiply by m(x) the objective function). It is
clear that if {y} has a single element x, then m(x) = 1, and the fitness function
is unchanged. If all the individuals have the same genes, then m(x) =

∑
s(0) =∑

1 = "Size of the population". There is one question we have not answered, what
should be the distance d of two individuals corresponding to the vectors r and q
(whose components correspond to free parameters P). We have the following
choice in FitSuite

d(r,q) =

√√√√∑
i

∣∣∣∣ ri − qi
Pmax
i − Pmin

i

∣∣∣∣2, (54)

as this metric takes into account each free parameter with the same weight (Pmin
i

and Pmax
i are the bounds of the i-th free parameter).

76

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Schematical steps of genetic algorithm used in FitSuite First initialize the
population, and determine the fitness of each individual, rank them according their
fitness (may use sharing too). The initializations is done by selecting randomly the
free parameter values inside the ranges of the corresponding parameter bounds.
One individual is not selected randomly, as it corresponds to the initial parameter
values set by the user, thus we cannot get a worse result than the starting point.
(Sorrily, this is not always quite true, as sometimes the objective function can be
smaller for simulation results, which a human would not accept as a better fit. For
such examples see the section about Robust estimation in Numerical Recipes in C
or wikipedia15)

After the initialization start the cycle of generations comprising the following
steps:

• Select randomly according to one of the selection mechanisms presented
above which individuals will survive the current generation and have off-
springs.

• Select randomly the mating pairs from survivors, each pair will have a pair
of offsprings.

• Determine the pair of offsprings for each pair using single point crossover
which in short is the following. Let represent one parent by a vector m
whose (m1m2 . . .mnfree) components are the corresponding free parame-
ters, similarly the other parent by a vector f = (f1f2 . . . fnfree) and the two
offsprings let be a = (a1a2 . . . anfree) and b = (b1b2 . . . bnfree). Select ran-
domly one of the free parameters, i.e. its index x ∈ [1, nfree], this will be the
crossover point. After a single crossover the offsprings will be the following

a = m1 m2 . . . mx−1 mx + r(fx −mx) fx+1 . . . fnfree

b = f1 f2 . . . fx−1 fx − r(fx −mx) mx+1 . . . mnfree

,

where r ∈ [0, 1] is a random number. It is clear that both offsprings will
have the genes, i.e. free parameter of both parents and the segments before
and after the crossover point belong to different parents; but inside these
segments there is no mixing. At the crossover point we have some random
mixing and the new parameter will be in the range bounded by fx and mx.
If they are the same (mx = fx), the offspring will have the same gene there
i.e. ax = bx = mx = fx, and there is no random change at that point. [18]

• Replace with offsprings the individuals which were not selected to survive.
(The population size does not change.)

15http://en.wikipedia.org/wiki/Theil-Sen estimator

77

http://en.wikipedia.org/wiki/Theil-Sen estimator

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

• Mutate randomly some of the individuals (except of the elite ones which
are not mutated). As we have written above at the explanation of Mutation
rate, we mutate NMut = "Mutation rate" ·("Population size" - "Size of elite
list")·"Number of free parameters" free parameters in total. Therefore we
choose randomly NMut times an individual (from the new population except
the elite members; we may choose the same individual several times), these
will be mutated, and then in each case we choose randomly one free param-
eter which will be changed randomly inside parameter bounds specified by
the user in the Parameter Editor (see page 37).

• Evaluate the new generation, determine the new order of fitness, and the
new elite individuals.

• Check convergence, if it is not reached start the cycle again with the new
generation.

3.12.8 After fit

If the result of the iteration is not what you like, you can get back the state before
the iteration by clicking Fit/Simulation Revert . Before a fit is started the project
is saved in the file *.sfp~, which is loaded on the command Revert.

From version 1.0.4 the results are not written in files automatically. They may
be exported using the menu items Results Export You may choose the data
which should be exported, and set the format of the created files using (Settings

Export Settings)

3.13 Uncertainty calculation
Uncertainties of free parameters may be calculated using Fit/Simulation Calculate Uncertainties .
There are currently two approaches used in the program for this purpose. One
is based on covariance matrix, the other is named bootstrap method (be aware
that bootstrap method is very expensive in computation time). Explanation of
the principles of these method can be found in Numerical Recipes in C available
at http://www.nrbook.com section 15.6. You may choose one of them (or both)
by proper settings after clicking menu item Fit/Simulation Select Fitting Method ,
on the page with title Parameter Uncertainties. Here, you may also change the
required confidence level. Still in the same dialog on page with title Bootstrap
method you can set the parameters used by bootstrap method, namely the number
of synthetic data sets and the convergence criterion. According to the literature
the number of synthetic data sets should be (at least) about a few thousands, the
current default value is 200, as we used most only for testing and because of the
slowness of this method. The convergence criterion gives the criterion to stop the

78

http://www.nrbook.com

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

fitting of a synthetic data set, if the difference of fitted statistics belonging to the
real experimental and the current synthetic data sets is smaller than this. Boot-
strap method needs uncertainties (errors) of the experimental data, without
that it will not work appropriately. If the experimental data has Poisson distribu-
tion, it is enough just to set the distribution properly.

3.14 Calculating statistics
to be written

3.15 Plotting
(Originally it was planned to use gnuplot for plotting of the results. That way we
could have more beautiful and appropriate (‘press ready’) graphs. The problem
is that it is a bit circumstantial to get control over the plot windows created by
gnuplot. There is a solution, but only for X11 systems and that would not be
portable. Therefore we use the open source plot library Qwt which is based on Qt.
This can be integrated in FitSuite and developed further without problems. It is
not as beautiful as gnuplot, but it should be enough during fitting or simulations.)

Presently, the (Qwt based) plot windows are created (if they are not available
already), when an iteration is started. The data and the results of simulations
before and after each iteration are plotted. The theoretical results are represented
by their ordinal numbers and with different colours in the plot legend. Clicking on
the corresponding part of the legends the user may hide(show) the corresponding
curves. Right clicking on the plot window, the user may zoom in (out) a selected
(first click on Zoom in in the pop-up menu and after that select with mouse)
rectangular region of the plot. You may choose logarithmic scale for y axes, but
this is not always perfect, as in Qwt it is done in a bit queer way (this may be
changed in next versions of FitSuite). The colors can be set, changed in pop-up
also clicking on Change Colors . Here you can change the available colors and
add new ones to the list. Pushing the button Set default you save these settings on
the computer, in order to have the same colors when you start FitSuite next time.
For offspecular problems [21] we have spectrograms, and contours, which can be
changed similarly. But in these cases, the levels should be set also, these may
be chosen to be elements of a geometric or arithmetic sequence, by clicking in
the menu of the corresponding dialog. In case of spectrograms you may create
line section graphs along the edges of a polygon by choosing from the pop-up
menu Polygon section , pressing the right mouse button you add the first vertex,
moving the mouse to a new point and pressing spacebar a new vertex can be added.
Pressing enter or the right mouse button you finish the polygon. In the profile
window you may need to choose logarithmic scale. The created line section profile

79

http://qwt.sf.net
http://en.wikipedia.org/wiki/Pop-up_menu
http://en.wikipedia.org/wiki/Pop-up_menu
http://en.wikipedia.org/wiki/Pop-up_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

may not be appropriate if the axes belonging to the two independent variable have
very different scale, or you have a polygon with too much vertices.

When the user would like to have an image file of the data and the fitted
curve, we recommend gnuplot (or Origin, etc.). From version 1.0.4 the results are
not written in files automatically (if it is not set so in Settings Export Settings).
They may be exported using the menu items Results Export You may choose
the data which should be exported, and set the format of the created files using
(Settings Export Settings)

Clicking on the menu items Plot Plot. . . you can choose the model (or model
group) whose simulation/fit result(s) you would like to plot. Plot Plot All replots
all the simulation(fit) results if you closed the plot windows before, but this works
only if there was a fresh simulation(fit). Plot Close All closes all the currently
open plot windows.

3.16 Sounds
Currently after the fit was finished a wav sound file is played. If you do not
like this, just select another file or switch it off using Sound Settings (Settings

Sound Settings).

3.17 Examples
Presently there are only a few example project files. They can be found in the
directory examples, where we can find several subdirectories. In each one we can
find project files saved at different phase of the project definition process. The
files ending with:

• Simulation.sfp (usually) contain simulations no data,

• Fit.sfp contain fits with data sets,

• Simultan.sfp contain several data sets fitted simultaneously.

In the directory:

• XrayReflectionFePd we can find projects for non-resonant X-ray reflectom-
etry experiments.

• ResonantXraySelfDiffusionFePd and XrayRes_NoResRelectionFeCr we can
find projects for resonant and non-resonant X-ray reflectometry experiments.

• MossbauerSpectraFemtz we can find projects for a Mössbauer experiment.
The project containing simultaneous fitting problems contains three spectra

80

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

for which the internal magnetic field Hint and the effective thicknesses of
sites s2 and s3 and a few other parameters were chosen to not to be corre-
lated during cloning.

• SMRStroboscopicMode we can find a project for Stroboscopic Mössbauer
simulations.

• SynchrotronTransmission we can find projects for synchrotron transmission
experiments.

• SynchrotronTimeDifferential we can find projects for a time differential re-
flection experiment.

• NeutronReflection there are two specular simulation projects CrFeSimu-
lation.sfp and FePdSelfDiffusionSimulation.sfp and two off-specular sim-
ulations CrFeOffspecularSimulation.sfp, CrFeOffspecularSimulationModi-
fied.sfp. In off-specular case the ‘3dimensional’ results are plotted in a col-
ored map. Usually, the color ranges are not appropriately chosen, but you
change as it is written in the section 3.15. Under Windows (and sometimes
under some Linuces) for some unknown reason there may be a segmentation
fault, if you calculate in too much points. Therefore loading the off-specular
problems set n_omega, n_theta_sca, etc. to smaller values, e.g.: 200 and
200 (or smaller).

• OffspecularResonantXRay is a project simulating off-specular problem for
synchrotron radiation. It is a recently added problem. It takes a long time
even to simulate, fit has not been made, tested.

• miscellaneous some simple functions added, just to test the fitting routines.

4 Sources, documentation
The sources containing the Fortran subroutines, Cfunctions used for simulations
with the libraries created from them can be found in directory Repositories. Their
documentation and the files used as help in the Parameter Editor are also there.
These are still not complete.

The experimental data files are collected in adatok and the project files in
examples.

81

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 11: Fitted X-ray reflectometry spectra

5 ‘Installation’
The current version was tested only under openSuse Linux 13.2 (32 and 64 bit)
and under Windows XP, 7 and 10. The program is mainly written and tested
under Linux, therefore the Windows version sorrily is still much more error-prone.
In principle the program can also be compiled for other Linux (Unix) distributions,
earlier (Linux, Windows) versions and Mac

5.1 Linux
Download the setup file fitsuite-2.0.0-LinuxDistribution-architecture.sh from
this web site or this ftp site. This is a Self Extracting Tar GZip compressed pack-
ages (needs /bin/sh, tar and gunzip for extracting) and you may need to set the
file permission in order to be allowed to execute. This shell script may have
the following arguments --prefix=full path to directory were FitSuite should be
installed, --help. After starting the script from a terminal will ask, whether
you accept the license or not, and that ‘Do you want to include the subdirec-
tory fitsuite.2.0.0-LinuxDistribution-architecture?’. For the last question answer
boldly ‘n’(o), as the program will be in prefix/FitSuite/2.0.0/. (If the ‘keyboard
repeat rate’ is too fast, it may happen, that the program does not react properly
and you cannot install it, in that case change your personal keyboard configu-

82

https://mydrive.kfki.hu/d/c64deb4aa8b541918b69/
ftp://nucssp.rmki.kfki.hu/fitsuite/CurrentVersion/LinBinary

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Figure 12: Off-specular synchrotron Mössbauer reflection simulation.

ration . . .) Start the program fitsuite.2.0.0 available in this directory. I tried to
include all the ‘non standard’ libraries needed by FitSuite, these are installed in
prefix/FitSuite/2.0.0/lib, hopefully there will no problem with this. If the program
does not find some of the libraries available here set using the command ’export
LD_LIBRARY_PATH = prefix/FitSuite/2.0.0/lib:$LD_LIBRARY_PATH’ (use full
path!). If other libraries are missed by the program, please check whether they are
installed on your system, etc.

The binary created for X86_64 of course will not run under 32 bit systems, do
not try to run binaries created for later Suse Linux versions in earlier distributions,
as probably the required system, gcc libraries may be too old.

5.2 Windows
Download the setup file fitsuite-2.0.0-Win32.exe from this web site or this ftp
site, and start it.

6 License
FitSuite is a scientific software provided free as it is under the terms of GNU GPL
license, except for one additional condition: should you use FitSuite to any ex-

83

https://mydrive.kfki.hu/d/800c33e33e6b479d8559/
ftp://nucssp.rmki.kfki.hu/fitsuite/CurrentVersion/WinBinary
ftp://nucssp.rmki.kfki.hu/fitsuite/CurrentVersion/WinBinary
http://www.gnu.org/licenses/gpl-2.0.html
http://www.gnu.org/licenses/gpl-2.0.html

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

tent for your publication, you should cite the article on FitSuite currently available
at http://arxiv.org/abs/0907.2805v1, by mentioning also the name of the program
and the version number. (e.g.: FitSuite 1.0.4) The above link will be updated
when the regular journal article will be out. Please use to Forum to disseminate
the bibliographic data of your published papers that make use of FitSuite.

Fitsuite uses the open source version of Qt (Qt licensing).
Source code of the main program is available on personal request to the author:

(sajti.szilard@wigner.hu), since it is essential for us and our funding agencies to
keep track of the distribution. Source code of the routines of the theories are
already included in the binaries.

The program uses 3rdparty libraries Qwt5, LAPACK, TSFIT, these could be
installed by the user. They are included in the directory 3rdParty only in order to
make the ‘installation’ of FitSuite 2.0.0 easier. Qwt has its own license (a bit mod-
ified version of GNU LGPL) given in the file 3rdParty/qwt/COPYING, for further
details see that. TSFIT may be distributed under GNU GPL see 3rdParty/TSFIT/-
COPYING. For LAPACK see 3rdParty/lapack-3.1.0/COPYING (it is not GPL but
something like that).

84

http://arxiv.org/abs/0907.2805v1
https://mailman.kfki.hu/listinfo/fs-forum
http://www.qt.io/licensing
http://www.fs.kfki.hu/QWT_COPYING
http://www.fs.kfki.hu/TSFIT_COPYING
http://www.fs.kfki.hu/TSFIT_COPYING
http://www.fs.kfki.hu/LAPACK_COPYING

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

References
[1] H. Spiering, L. Deák, and L. Bottyán: Effino Hyp. Interact. 125:(1-4) (2000)

197–204. doi: 10.1023/a:1012637721433.

[2] K. Kulcsár, D. L. Nagy, and L. Pócs: A complete package of programs
for the evaluation of Mössbauer and gamma spectra in: Proc. Conf. on
Mössbauer Spectrometry, (Dresden, 1971) 594.

[3] B. Window: Hyperfine field distributions from Mössbauer spectra J. Phys.
E: Sci. Instrum. 4:(5) (1971) 401–402. doi: 10.1088/0022-3735/4/5/022.

[4] J. Hesse and A. Rübartsch: Model independent evaluation of overlapped
Mössbauer spectra J. Phys. E: Sci. Instrum. 7:(7) (1974) 526–532. doi:
10.1088/0022-3735/7/7/012.

[5] G. L. Caër and J. M. Dubois: Evaluation of hyperfine parameter distribu-
tions from overlapped Mössbauer spectra of amorphous alloys J. Phys. E:
Sci. Instrum. 12:(11) (1979) 1083–1090. doi: 10.1088/0022-3735/12/11/0
18.

[6] I. Vincze: Fourier evaluation of broad Mössbauer spectra Nucl. Instr. and
Meth. 199:(1-2) (1982) 247–262. doi: 10.1016/0167-5087(82)90210-1.

[7] R. A. Brand and G. L. Caër: Improving the validity of Mössbauer hyperfine
parameter distributions: The maximum entropy formalism and its applica-
tions Nucl. Instr. and Meth. B 34:(2) (1988) 272–284. doi: 10.1016/0168-5
83x(88)90754-9.

[8] T. Hauschild and M. Jentschel: Comparison of maximum likelihood estima-
tion and chi-square statistics applied to counting experiments Nucl. Instr.
and Meth. A 457:(1-2) (2001) 384–401. doi: 10.1016/s0168-9002(00)0075
6-7.

[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery: Numeri-
cal Recipes in C: The Art of Scientific Computing, 2nd ed. (New York, NY,
USA: Cambridge University Press, 1992) ISBN: 0-521-43108-5. [Online].
Available: http://www.nrbook.com.

[10] B. Efron: Bootstrap methods: Another look at the jackknife Ann. Statist.
7:(1) (1979) 1–26. doi: 10.1214/aos/1176344552.

[11] B. Efron: The jackknife, the bootstrap and other resampling plans. (Society
for Industrial & Applied Mathematics (SIAM), 1982) doi: 10.1137/1.9781
611970319.

[12] B. Efron and R. Tibshirani: Bootstrap methods for standard errors, confi-
dence intervals, and other measures of statistical accuracy Stat. Sci. 1:(1)
(1986) 54–75. doi: 10.1214/ss/1177013815.

85

http://dx.doi.org/10.1023/a:1012637721433
http://dx.doi.org/10.1088/0022-3735/4/5/022
http://dx.doi.org/10.1088/0022-3735/7/7/012
http://dx.doi.org/10.1088/0022-3735/7/7/012
http://dx.doi.org/10.1088/0022-3735/12/11/018
http://dx.doi.org/10.1088/0022-3735/12/11/018
http://dx.doi.org/10.1016/0167-5087(82)90210-1
http://dx.doi.org/10.1016/0168-583x(88)90754-9
http://dx.doi.org/10.1016/0168-583x(88)90754-9
http://dx.doi.org/10.1016/s0168-9002(00)00756-7
http://dx.doi.org/10.1016/s0168-9002(00)00756-7
http://www.nrbook.com
http://dx.doi.org/10.1214/aos/1176344552
http://dx.doi.org/10.1137/1.9781611970319
http://dx.doi.org/10.1137/1.9781611970319
http://dx.doi.org/10.1214/ss/1177013815

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

[13] B. Efron and R. J. Tibshirani: An Introduction to the Bootstrap. (New York:
CRC, 1993)

[14] B. Winkler: Bootstrapping goodness of fit statistics in loglinear Poisson
models Institut für Statistic, Universität München, Sonderforschungsbere-
ich 386 Discussion Paper 53, 1996. [Online]. Available: http://epub.ub.uni-
muenchen.de/1449/.

[15] C.-J. Lin: Projected gradient methods for non-negative matrix factorization
Neural Comput. 19:(10) (2007) 2756–2779. doi: 10.1162/neco.2007.19.10
.2756.

[16] J. Moré, B. Garbow, and K. Hillstrom: User guide for MINPACK-1 Ar-
gonne National Laboratory, Technical Report ANL-80-74, 1980.

[17] J. Moré, D. Sorenson, B. Garbow, and K. Hillstrom: The MINPACK project
in: Sources and Development of Mathematical Software, W. Cowell, Ed.,
(Prentice-Hall, 1984) 88–111.

[18] R. L. Haupt and S. E. Haupt: Practical genetic algorithms. (New York, NY,
USA: Wiley-Blackwell, 2004) doi: 10.1002/0471671746.

[19] Z. Michalewicz: Genetic algorithms + data structures = evolution pro-
grams. (Springer Science + Business Media, 1996) doi: 10.1007/978-3-66
2-03315-9.

[20] K. D. M. Harris, R. L. Johnston, and B. M. Kariuki: The genetic algorithm:
Foundations and applications in structure solution from powder diffraction
data Acta Cryst. A54:(5) (1998) 632–645. doi: 10.1107/s01087673980033
89.

[21] L. Deák, L. Bottyán, D. L. Nagy, H. Spiering, Y. N. Khaidukov, and Y.
Yoda: Perturbative theory of grazing-incidence diffuse nuclear resonant
scattering of synchrotron radiation Phys. Rev. B 76:(22) (2007) 224420.
doi: 10.1103/physrevb.76.224420.

86

http://epub.ub.uni-muenchen.de/1449/
http://epub.ub.uni-muenchen.de/1449/
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1002/0471671746
http://dx.doi.org/10.1007/978-3-662-03315-9
http://dx.doi.org/10.1007/978-3-662-03315-9
http://dx.doi.org/10.1107/s0108767398003389
http://dx.doi.org/10.1107/s0108767398003389
http://dx.doi.org/10.1103/physrevb.76.224420

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

Glossary
big O notation is used to give the order of magnitude, e.g. O(h2) should be read

as order of h2.

check box is a graphical user interface element (widget) that permits the user to
make multiple selections from a number of options. Normally, check boxes
are shown on the screen as a square box that can contain white space (for
false) or a tick mark or X (for true). (see wikipedia)

correlation is an operation transformation matrix used to eliminate the redundan-
cies arising because of common model parameters, see eq. (1), its inverse is
the decorrelation. (see subsection 2.2)

decorrelation is the inverse of correlation, which is not unequivocal, therefore
further user interaction may be needed. (see subsection 2.2)

degree of freedom (DOF) is the number of data points minus the number of fit-
ted parameters.

distribution midrange is the middle of the distribution range.

distribution range is the width of the histogram, outside of which the approxi-
mated distribution is assumed to be negligible.

EFFI (Environment For FItting) is the name of the program written by Hartmut
Spiering.

experimental scheme contains the information necessary for description of the
system consisted of the experimental apparatus(es), about the experimental
method performed with them and of the system under study e.g: a measured
sample. (see subsection 2.1)

extraction type (spec file) is a structure, which may be defined by the user, used
to collect the information needed to extract a scan from a spec file into a
FitSuite data set.

feasible region in case of optimization problems with constraints is the region
in the parameter space determined by the constraints where the optimum
should be found.

feasible set see feasible region

87

http://en.wikipedia.org/wiki/Check_box

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

fitted statistic In case of simultaneous fitting, we can have experimental data
with different distributions, therefore the statistics used to fit for each fit-
ting problem may be different. We fit a resulting statistic, their (weighted)
sum. This is not a problem, as if we start from the MLE, from which all of
them are derived, we would obtain also such a resulting statistic. In the case
of the resulting statistic, the names like classical χ2, Pearson‘s χ2, etc. will
not have any meaning, therefore in the program it is referred to just as the
‘Fitted Statistic’.

goodness-of-fit statistic is a statistic measuring the goodness of a fit. (see sub-
section 2.4)

GUI Graphical User Interface

histogram element is the element of the vector containing all the dependent val-
ues (frequencies, or probabilities) available in the histogram.

integer parameter Some parameters are integer numbers, these are not fitted,
and are handled separately from real number based parameters, in order to
avoid rounding errors.

menu key is a key which usually can be found between Alt Gr and Ctrl on the
Microsoft Windows-oriented keyboards with a symbol like on it. It is
used to open a pop-up menu instead of right clicking. To have the proper
pop-up menu the corresponding window, widget, other GUI object should
have focus. (see wikipedia)

model is an object to which belong algorithms for calculation of characteristic
spectra. (see subsection 2.1)

model parameters are all the parameters, which are needed by the models in or-
der to calculate the spectra, without using transformation matrix technique.
Usually there are a lot of common parameters, wherefore transformation
matrix technique is used. (see subsection 2.2)

object The word object is used in several sense in this text, including its everyday
meaning too. It may mean:

• in most of the cases means a physical object or concept (see the corre-
sponding item in the glossary, and subsection 2.1)),

• a program language concept used in Object Oriented Programming.

objective function is the function whose location of minimum and/or maximum
is to be found by the optimization method.

88

http://en.wikipedia.org/wiki/Menu_key

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

optimization method is an algorithm used to find the location(s), where a given
function assumes its minimum or maximum.

parameter distribution see subsection 2.3

parameter insertion inserts a new simulation/fit parameter, inserting a new col-
umn in the transformation matrix (see subsection 2.2)

parameter vector is a vector (array) consisted of the simulation/fit or model pa-
rameters as components.

penalty function method is a method used for optimization problems with con-
straints, modifying the objective function by adding penalty functions out-
sied of the feasible region. (see subsection 2.6.1)

pop-up menu is a menu in a graphical user interface (GUI) that appears upon
user interaction, such as a right mouse click or pressing the menu key,
which usually can be found between Alt Gr and Ctrl on the keyboard. (see
wikipedia)

property Properties in FitSuite represent the physical quantities (thickness, rough-
ness, hyperfine field, susceptibility, electric field gradient, effective thick-
ness, etc.) and some numbers characterizing the experimental scheme e.g.
number of channels, symmetries of the sites, etc. (see subsection 2.1)

reduced χ2 is the χ2 divided by degree of freedom (see eq. (14))

repetition group (of physical objects) is a group of physical objects, e.g. layers
which (more accurately the same sort of objects) are repeated in the same
order several times.

repetition group number shows how many times the elements of the repetition
group are repeated in the real physical system

root object is at the root of the object tree structure. It is analogous to the root
(main in some operating systems) directory in the file systems used in com-
puting.

simulation/fit parameters are all the parameters, which using transformation
matrix technique are needed to calculate the spectra. Optimally the number
of simulation/fit parameters is less than the number of model parameters, as
already some redundancy is eliminated, by proper choice of the transforma-
tion matrix. (see subsection 2.2)

89

http://en.wikipedia.org/wiki/Context_menu

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

spec file is a file format of Certified Scientific Software’s specTM (X-Ray Diffrac-
tion and Data Acquisition software) used for experimental data in ESRF and
many other places.

submodel is a model which is part of another model, it represents a physical
system, to which we can relate intermediate results, (sub)spectra, which are
used calculating the spectra measured in the experiment.

subspectrum see subsection 2.7

tooltip The tooltip is a common graphical user interface element. It is used in
conjunction with a cursor, usually a mouse pointer. The user hovers the
cursor over an item, without clicking it, and a small "hover box" appears
with supplementary information regarding the item being hovered over (see
wikipedia)

transformation matrix is a matrix (technique) used to eliminate the redundancy
arising because of common parameters and/or to take into account linear
interdependencies of the parameters. (see subsection 2.2)

transformation matrix split is an operation transformation matrix used to split
a submatrix into two in order to have smaller, more transparent submatrices,
which build up the sparse transformation matrix. (see eq. (2) and the second
paragraph of subsection 2.2)

transformation matrix unification is the reverse of split, the cross-elements are
set yo zero.

white space characters used to represent white space in text. (see wikipedia)

90

http://www.certif.com
http://www.certif.com/spec.html
http://en.wikipedia.org/wiki/Tooltip
http://en.wikipedia.org/wiki/Whitespace_(computer_science)

Index
! negation operator 40
? wildcard 39
& and operator 40
* wildcard 39
*.mod 23
*.sfp 2
@ (parameter name filter) 41
@c (constant parameter filter) 43
@ca (calibration constant parameter fil-

ter) 43
@Cf (correlation function name filter)

43
@cn (model defined constant parameter

filter) 44
@Co (correlated parameter filter) 44
@cu (user defined constant parameter

filter) 44
@cugd (current grid parameter filter) 44
@d (distributed parameter filter) 44
@de (decorrelated parameter filter) 44
@di (disabled parameter filter) 44
@dm (parameter distribution midrange

filter) 44
@dr (parameter distribution range filter)

44
@fi (fix parameter filter) 43
@fr (free parameter filter) 43
@gd (grid parameter filter) 44
@hi (hidden parameter filter) 44
@hu [hidden (by the user) parameter fil-

ter] 44
@in (inserted parameter filter) 44
@m (model name filter) 41
@mg (model group name filter) 41
@mt (model type name filter) 41
@o (object name filter) 42
@og (object group filter) 43
@ot (object type name filter) 42

@p (property name filter) 42
@pc (property component name filter)

42
@rc (recently changed parameter filter)

45
@s (linked (symbolic) object name fil-

ter) 43
@smt (submodel type name filter) 41
@st (linked (symbolic) object type name

filter) 43
@T (transformation matrix name filter)

43
@u (unit parameter filter) 44
[. . .] wildcard 39

A
Add

Data 31
New Model 23

add
data to model 35
model 22

addToMagnitude 52
addToMaximum 52
addToMinimum 51
addToResolution 52
addToValue 51
Alpha 69

B
bootstrap method 12-14, 78, 79
bound 15, 19
brent 66
Brent‘s

method 66, 67
using derivatives 66, 67

Broyden – Fletcher – Goldfarb -
- Shanno (BFGS) method 69

91

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

C
C 14, 66, 67, 69, 81
c 37
C++ 70
ca 36
Case sensitive (filter option) 40
χ2

classical 7
modified Neyman’s 8
Pearson’s 8
reduced 10

clone 63
cn 37
coefficient

penalty 15
command

addToMagnitude 52
addToMaximum 52
addToMinimum 51
addToResolution 52
addToValue 51
argument 38
correlate 46
decorrelate 46
default option 45
divideMagnitude 53
divideMaximum 53
divideMinimum 53
divideResolution 53
divideValue 53
excludeDataValues 54
export 47
exportModelParameters 48
exportModelParameterTable 48
exportMPT 48
fix 47
free 47
help 55
hide 47
includeDataValues 54
insertSP 54

list 46
listUnitsOf 50
math 55
multiplyMagnitude 52
multiplyMaximum 52
multiplyMinimum 52
multiplyResolution 52
multiplyValue 52
option 45
plotModelParameterTable 49
plotMPT 49
renameModel 54
setConstant 47
setMagnitude 51
setMatrixElement 53
setMatrixPartialColumn 54
setMaximum 51
setMinimum 51
setResolution 51
setToAbsoluteValue 53
setValue 50
setVariable 47
swapParameterForMatrixDiagonal 53
unhide 47
word 38

commands 45
common parameter 3, 4, 10
compact format 31, 32
confidence

interval 12
level 11, 12, 14, 78

constant 36
calibration 36, 37
model defined 36, 37
user defined 36, 37

constraint 5-7, 15-18
Contraction factor 68
convergence criterion 69, 78
correlate 38

command 46
parameters 4, 46, 63

92

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

correlation
function 24, 36

covariance matrix 12, 14, 78

D
data file formats 31

compact 31, 32
MCA file 31, 34
one column 31
spec 34
three column 31
two column 31

data series 33
data set

replace 35
synthetic 12, 13, 78, 79

Davidson – Fletcher – Powell (DFP)
method 69

decorrelate 38
command 46
parameters 4, 46

default option
command 45

degree of freedom 8-11, 14
derivative 12, 15, 17, 20, 21

of fitted statistic 11
displayed

number 38
distributed

parameter 6, 7, 18
distribution 34

data set
Gaussian 8, 13
Poisson 8, 13

midrange 6
range 6

divideMagnitude 53
divideMaximum 53
divideMinimum 53
divideResolution 53
divideValue 53

DOF see degree of freedom
Dynasync 1

E
Edit

Fitting Parameters 36
Integer Parameters 38
Integer T Matrices 38
Regenerate Matrices 36, 37
T Matrices 38

EFFI 2
element

histogram 6, 7
entropy 6, 7, 18

maximum 6, 7
error

estimation 9, 11, 13, 14
experimental data 7, 9, 13, 34, 79

excludeDataValues 54
excluding bad data points 35, 36
experimental

data 2, 34, 79
error 7, 9, 13, 34, 79
preprocessed 9, 34, 36
uncertainty 7, 9, 13, 34, 79

scheme 2, 3, 23
export

command 47
exportModelParameters

command 48
exportModelParameterTable

command 48
exportMPT

command 48
extraction type 34

F
factor 71

Contraction 68
Reflection 67
Stretch 67

93

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

file extension
mod 23
sfp 2

filter
argument 38

wildcard * 39 ? 39[. . .] 39
calibration constant parameter (@ca)

43
command 38

argument 38
word 38

constant parameter (@c) 43
correlated parameter (@Co) 44
correlation function name (@Cf) 43
current grid parameter (@cugd) 44
decorrelated parameter (@de) 44
disabled parameter (@di) 44
distributed parameter (@d) 44
fix parameter (@fi) 43
free parameter (@fr) 43
grid parameter (@gd) 44
hidden (by the user) parameter (@hu)

44
hidden parameter (@hi) 44
inserted parameter (@in) 44
linked (symbolic) object name (@s)

43
linked (symbolic) object type name

(@st) 43
logical operator

and (&) 40
negation (!) 40
or () 40

midranges of parameter distributions
(@dm) 44

model defined constant parameter (@cn)
44

model group name (@mg) 41
model name (@m) 41
model type name (@mt) 41
object group (@og) 43

object name (@o) 42
object type name (@ot) 42
parameter name (@) 41
property component name (@pc) 42
property name (@p) 42
ranges of parameter distributions (@dr)

44
recently changed parameter (@rc)

45
submodel type name (@smt) 41
transformation matrix name (@T)

43
unit parameter (@u) 44
user defined constant parameter (@cu)

44
filter option

Case sensitive 40
Strict pattern 39

First line to read in 32
Fit/Simulation

Calculate Uncertainties 78
Fit 66
Fit Only 66
Force Simulation 65
Force Simulation of 66
Revert 78
Select Fitting Method 66, 78
Simulate 65
Simulate Only 66

FitSuite 1
Fitted Statistic 9, 11-14, 18, 34, 79
fitting

parameter 3
problem 2, 7, 8, 10, 18, 66

fix
command 47

Fletcher – Reeves method 67, 68
Fortran 2, 67, 69, 70, 81
free

command 47
free parameters 36, 37, 78

94

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

ftol 70
function

correlation 24, 36
incomplete gamma 9
objective 15, 16, 18-20
penalty 15-18

G
Gaussian

MLE 8
Genetic algorithm 71
GLimit 67
gnuplot 79, 80
GOF statistic see Goodness Of Fit

statistic
Golden-section search 66
Goodness Of Fit statistic 8, 9, 36
grid type 66
group

model 65, 66, 80
physical object 24
repetition see group, physical ob-

ject
number 24

Group Model(s) 65
gtol 70
GUI 2

H
Help

What is this? 38
help

command 55
hide

command 47
curve 79
parameter 37

histogram
element 6, 7

hypothesis test 8, 9

I
import data set 31, 34
includeDataValues 54
incomplete gamma function 9
Initial simplex size 68
initial submatrix 4
Insert 23
inserting parameter 5
insertSP 54
integer

parameter 5
transformation matrix 5

Integer Parameter Editor 38
Integer Transformation Matrix Editor 38

L
Lagrange multiplier 5
λ0 70
λmax 70
λmin 70
Let Be Constant 36
Let Not Be Constant 36
Levenberg – Marquardt method 70
linked object 36
list

command 46
listUnitsOf 50

M
machine precision 21
magnitude 19, 38
math

command 55
matrix

operation 38
split 4
unification 5

MaxFev 70
maximum

entropy 6, 7
likelihood estimation 8

95

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

MaxIter 66, 67, 69, 70
MaxIterLine 66
MaxStep 69
MCA file 31, 34
mean square uncertainty 34
merge

project 65
midrange

distribution 6
minimum step width 19
MINPACK 70
MLE see maximum likelihood estima-

tion
Gaussian 8
Poisson 8

model 3
group 65, 66, 80
parameter 3
structure 23, 62

Model Editor 23
multiplier

Lagrange 5
multiplyMagnitude 52
multiplyMaximum 52
multiplyMinimum 52
multiplyResolution 52
multiplyValue 52

N
name convention 36
Nelder – Mead method 67
neutron reflectometry 9
Neyman’s modified χ2 8
normalization factor 9, 35, 36
normally distributed 10
Notes for data set 36
Nrep 24
Number of lines to read 32

O
objective function 15, 16, 18-20

optimization method 3
option

command 45
or operator 40

P
parameter

common 3, 4, 10
correlation 4, 46, 63
decorrelation 4, 46
distribution 6, 7, 18
filters 38
fitting 3
hidden 37
insertion 5, 38
integer 5
magnitude 19, 38
model 3
name convention 36
rescaling 19, 38
resolution 19
simulation 3

Parameter Editor 36
Pearson’s χ2 8
penalty

coefficient 15
function 15-18

physical
object 2

group 24
units 37

plotModelParameterTable
command 49

plotMPT
command 49

Poisson
MLE 8

Polak – Ribiere method 67, 68
Powell‘s method 66
preprocessed data 9, 34, 36
Problems Window 23

96

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

project
merge 65

projected gradient method 17
projection method 17
properties 3

Q
quantile 11, 14
Qwt library 79

R
range

distribution 6
reduced χ2 10
Reflection factor 67
renameModel 54
repetition group see group, physical ob-

ject
number 24

Replace Data 35, 63
replace data set 35
rescaling 19, 38
resolution 19
Results

Export 78, 80
Report 62

Romberg‘s method 20
root mean square uncertainty 34
rounding 38

S
setConstant 47
setMagnitude 51
setMatrixElement 53
setMatrixPartialColumn 54
setMaximum 51
setMinimum 51
setResolution 51
Settings

Editor Settings 37, 38
Export Settings 78, 80
Sound Settings 80

setToAbsoluteValue 53
setValue 50
setVariable 47
sfp file 22
simulation

parameter 3
simultaneous

fit project 2
fitting 3, 4, 8, 10

problem 10
split

matrix 4, 38
statistic

classical χ2 7
fitted 9, 11-14, 18, 34, 79
Gaussian MLE 8
Goodness Of Fit 8, 9, 36
Neyman’s modified χ2 8
Pearson’s χ2 8
Poisson MLE 8
reduced χ2 10

Statistical Properties 36
Stretch factor 67
Strict pattern (filter option) 39
submatrix 3

initial 4
subspectrum 21, 22
swapParameterForMatrixDiagonal 53
synthetic data set 12, 13, 78, 79

T
tolerance 66, 67, 69, 70
tolLine 67
TolxLnsrch 69
tooltip 38
transformation matrix 3, 36

integer 5
technique 3

Transformation Matrix Editor 38

U
uncertainty

97

USER MANUAL OF FITSUITE 2.0.0
October 26, 2021 SAJTI Szilárd

estimation 9, 11, 13, 14
experimental data 7, 9, 13, 34, 79
type 34

unhide
command 47

unify
matrix 5, 38

units
physical 37

V
View

Show Open spec Files 34

W
wildcard 39

* 39
? 39
[. . .] 39

X
xtol 71

98

	Contents
	Introduction, antecedents
	Basic concepts of FitSuite
	Experimental scheme and its structure
	Transformation matrix technique
	Parameter distribution
	Statistics
	Uncertainty estimation, bootstrap method
	Fitting
	Constraints (Simple bounds)
	Distributed parameters (using maximum entropy principle)
	Rescaling parameters
	Parameter resolution, minimum step width
	Numerical derivatives

	Subspectrum

	Working with FitSuite
	Starting a new project
	Building up the model structure
	Adding objects, models using xml like files
	Copying and inserting objects

	Adding data
	Changing parameters, matrices
	Parameter filtering
	Single word arguments, wildcards
	Complex arguments, logical operators
	Combination of commands using logical operators
	List of filter commands
	List of filter commands with optional arguments
	Complex examples

	Command-line interface
	The `math' command
	Mathematical functions in math command

	Report generator
	Cloning
	Merging projects
	Model groups
	Simulation, Fit
	Powell`s method
	Nelder — Mead method
	Polak — Ribiere and Fletcher — Reeves
	Broyden — Fletcher — Goldfarb — Shanno
	Levenberg — Marquardt
	Levenberg — Marquardt method (LMDER) from the MINPACK
	Genetic algorithms
	After fit

	Uncertainty calculation
	Calculating statistics
	Plotting
	Sounds
	Examples

	Sources, documentation
	`Installation'
	Linux
	Windows

	License
	References
	Glossary
	Index

